18.786 Problem Set 1 - Spring 2008
Due Thursday, Feb. 14 at 1:00

1. Using the notation (, := e2™/™ 4+ ¢=27/" find f(x) € Z[z] such that f(a) = 0 for:

(a) o =V2+ V7, (¢) a=(s.
(b) a =iv/4,

2. Find the integral closure of Z in Q(v/d) for any d € Zx.

3. As mentioned on the first day of class, there is the following ideal factorization in

R=7Z[\V/-5|:
(6) = (2,1 4+vV=5) (2,1 —vV=5) (3,1 +v=5) (3,1 — v/=5).

Find the index of each of these ideals in R. Use the complex norm |a + bi| = Va2 + b?
to show that none of these ideals are principal.

4. In this problem, you will use symmetric polynomials to prove that the set of algebraic
integers of R with respect to R’ D R forms a subring in R’
A function f(x1,...,7,) € R[z1,..., 2] is symmetricif f(zrq), .. Tam)) = f(T1,. .., 20)
for any permutation 7. The elementary symmetric functions are defined by

Sk(x1,...,xp) = Z Tiy - Ty, (0 <k <n).

1<i1 <2< <1 <N

(a) Prove that any symmetric function can be written as a polynomial in the Sy (hint:
Define a canonical ordering of monomials and argue inductively).

(b) If av is an algebraic integer with minimal polynomial f(z) = (z—a1)--- (x —ay) €
R[z] (roots a1 = «, ..., ), then show that Sk(aq,...,ay) € R for all k.

(c) Suppose that «, (3 are algebraic integers with minimal polynomials f(z) = (z —
a1) - (r—ayp) and g(z) = (x—01) - - (x— B, respectively. Consider the function

m

F(z):= Hf(x - B),

J=1

which has as roots all sums x = «;+a;, including a+ 4. Using symmetric functions,
conclude that F'(x) € R[z]. Define a similar polynomial Fy(x) € R[z] that has af
as a root, concluding the proof that the algebraic integers are closed under addition
and multiplication.

5. Use the complex norm to prove the division algorithm for Z[i] : If a,b € Z[i] and b # 0,
then there are ¢,r € Z[i] such that a = bg + r and |r| < |b|.
Remark. This implies that Z[i] is a Euclidean domain, and hence a principal ideal

domain and unique factorization domain as well!

6. Install a recent version of SAGE or PARI/GP and learn some of the basic commands.
Use the following approach to write p = 44560482149 as a sum of two integer squares:



e Recall Wilson’s Theorem, which states that (p —1)! = —1 (mod p) for any prime.
If p = 4k + 1, this implies that (2k)! is a solution to 22 = —1 (mod p).

e A solution to this equivalence means that (z + ¢)(z — i) = np for some n € Z.
Wilson’s Theorem was historically used to verify the existence of such a solution,
but it’s computationally more efficient to use z = a®~1/* for a primitive multi-
plicative root mod p. Clearly p does not divide either term of the product, so p
is not a prime in Z[i]. Therefore, p = (a + bi)(a — bi) for some Gaussian integer
(we’ll see why it has exactly these two factors later).

e To find one of the factors, calculate the GCD of p and x + ¢ using the Euclidean
algorithm. Then p = a? + b?!

Turn in a printout of your calculations along with the rest of the assignment.



