
18.786 Problem Set 1 - Spring 2008

Due Thursday, Feb. 14 at 1:00

1. Using the notation ζ̃n := e2πi/n + e−2πi/n, find f(x) ∈ Z[x] such that f(α) = 0 for:

(a) α =
√

2 +
√

7,

(b) α = i
3
√

4,

(c) α = ζ̃5.

2. Find the integral closure of Z in Q(
√

d) for any d ∈ Z≥0.

3. As mentioned on the first day of class, there is the following ideal factorization in
R = Z[

√
−5] :

(6) = (2, 1 +
√
−5) (2, 1 −

√
−5) (3, 1 +

√
−5) (3, 1 −

√
−5).

Find the index of each of these ideals in R. Use the complex norm |a + bi| =
√

a2 + b2

to show that none of these ideals are principal.

4. In this problem, you will use symmetric polynomials to prove that the set of algebraic
integers of R with respect to R′ ⊃ R forms a subring in R′.

A function f(x1, . . . , xn) ∈ R[x1, . . . , xn] is symmetric if f(xπ(1), . . . , xπ(n)) = f(x1, . . . , xn)
for any permutation π. The elementary symmetric functions are defined by

Sk(x1, . . . , xn) :=
∑

1≤i1<i2<···<ik≤n

xi1 · · · xik (0 ≤ k ≤ n).

(a) Prove that any symmetric function can be written as a polynomial in the Sk (hint:

Define a canonical ordering of monomials and argue inductively).

(b) If α is an algebraic integer with minimal polynomial f(x) = (x−α1) · · · (x−αn) ∈
R[x] (roots α1 = α, . . . , αn), then show that Sk(α1, . . . , αn) ∈ R for all k.

(c) Suppose that α, β are algebraic integers with minimal polynomials f(x) = (x −
α1) · · · (x−αn) and g(x) = (x−β1) · · · (x−βm), respectively. Consider the function

F (x) :=
m∏

j=1

f(x − βj),

which has as roots all sums x = αi+αj, including α+β. Using symmetric functions,
conclude that F (x) ∈ R[x]. Define a similar polynomial F2(x) ∈ R[x] that has αβ

as a root, concluding the proof that the algebraic integers are closed under addition
and multiplication.

5. Use the complex norm to prove the division algorithm for Z[i] : If a, b ∈ Z[i] and b 6= 0,
then there are q, r ∈ Z[i] such that a = bq + r and |r| < |b|.
Remark. This implies that Z[i] is a Euclidean domain, and hence a principal ideal
domain and unique factorization domain as well!

6. Install a recent version of SAGE or PARI/GP and learn some of the basic commands.
Use the following approach to write p = 44560482149 as a sum of two integer squares:



• Recall Wilson’s Theorem, which states that (p− 1)! ≡ −1 (mod p) for any prime.
If p = 4k + 1, this implies that (2k)! is a solution to x2 ≡ −1 (mod p).

• A solution to this equivalence means that (x + i)(x − i) = np for some n ∈ Z.

Wilson’s Theorem was historically used to verify the existence of such a solution,
but it’s computationally more efficient to use x = a(p−1)/4 for a primitive multi-
plicative root mod p. Clearly p does not divide either term of the product, so p

is not a prime in Z[i]. Therefore, p = (a + bi)(a − bi) for some Gaussian integer
(we’ll see why it has exactly these two factors later).

• To find one of the factors, calculate the GCD of p and x + i using the Euclidean
algorithm. Then p = a2 + b2!

Turn in a printout of your calculations along with the rest of the assignment.


