18.786 Problem Set 3 - Spring 2008

Due Thursday, Mar. 6 at 1:00

- 1. (a) Exercise 4 on page 29 of Janusz.
 - (b) Exercise 5 on page 30 of Janusz.
- 2. Exercise 6 on page 32 of Janusz. Take special note of what this implies for ramification in the Gaussian integers (d = -1).
- 3. Determine the set $\mu := \{ \alpha \in \mathbb{Q}[\sqrt{-d}] : d \in \mathbb{N}, \alpha = \text{cplx. root of 1} \}$. Note that this is **not** the set of multiplicative units in $\mathbb{Q}[\sqrt{d}]$. (*Hint:* μ *is a finite set look at extension dimensions*).
- 4. A biquadratic field is a number field of degree 4 of the form $\mathbb{Q}[\sqrt{d_1}, \sqrt{d_2}]$ for distinct $d_i \in \mathbb{Z}$.
 - (a) Determine which of the cyclotomic fields $\mathbb{Q}[\zeta_p]$ are biquadratic.
 - (b) Characterize the possible ramification degrees for primes in a biquadratic extension. In particular, there is only one prime $\mathfrak{p} \subset \mathbb{Z}$ that can have ramification degree 4.