18.786 Problem Set 5 - Spring 2008

Due Thursday, Apr. 3 at 1:00

- 1. Exercise 1 on page 73 of Janusz.
- 2. Let K be an abelian number field whose Galois group is $G_{K/\mathbb{Q}} \cong (\mathbb{Z}/2\mathbb{Z})^n$ for some $n \ge 0$, such that all primes $2 \ne p \in \mathbb{Z}$ are unramified. Show that K must be a subfield of $\mathbb{Q}(i, \sqrt{-2})$, so $n \le 2$.
- 3. Use Minkowski's bound (i.e., pen and paper!) to find the class numbers of the following fields:

(a)
$$\mathbb{Q}[\sqrt{-23}]$$
 (b) $\mathbb{Q}[\sqrt{-47}]$

- 4. Let K be a cubic number field with $\Delta(K) < 0$. Use the Minkowski bound to find a value for M such that cl(K) = 1 whenever $-M < \Delta(K) < 0$.
- 5. Characterize the ring of units (use the unit Theorem to find the rank, torsion subgroup, and fundamental unit when possible/meaningful) for the following number fields:
 - (a) $\mathbb{Q}[\sqrt{-7}]$ (c) $\mathbb{Q}[\zeta_5]$ (b) $\mathbb{Q}[\sqrt{7}]$