18.786 Problem Set 6 - Spring 2008

Due Thursday, Apr. 10 at 1:00

- 1. Characterize the ring of units (use the unit Theorem to find the rank, torsion subgroup, and fundamental units when possible/meaningful) for the following number fields:
 - (a) $\mathbb{Q}\left[\tilde{\zeta_7}\right]$
 - (b) $\mathbb{Q}[\sqrt{5}, \sqrt{-2}]$

- (c) $\mathbb{Q}[\zeta_n]$ (find the rank and fundamental units as a function of n)
- 2. (a) For any integers m and M, let $\mathcal{O}_{m,M}^{\star}$ be the set of all algebraic integers α over \mathbb{Z} such that the degree of α is at most m, and $|\sigma(\alpha)| < M$ for all conjugates of α . Prove that $\mathcal{O}_{m,M}^{\star}$ is finite.

Hint: Any such α has a minimal polynomial – bound the coefficients.

- (b) Let $\mathcal{O}_{m,M}$ be the set of all algebraic integers α over \mathbb{Z} such that the degree of α is at most m and $|\alpha| < M$. Is $\mathcal{O}_{m,M}$ finite?
- 3. Let K be either of the number fields $\mathbb{Q}(\sqrt{\pm 2}, \sqrt{-5})$.
 - (a) Prove that \mathcal{O}_K^{\times} has rank 1.
 - (b) Use ramification in cyclotomic fields to prove that the torsion subgroup T(K) is $\{\pm 1\}$.
- 4. Let K be a number field, and let S be a finite set of nonzero primes in \mathcal{O}_K , with localization $\mathcal{O}_{K,S}$ (localize with respect to ideals whose only prime factors are elements of S).
 - (a) Prove that the torsion subgroups of $\mathcal{O}_{K,S}^{\times}$ and \mathcal{O}_{K}^{\times} are isomorphic.
 - (b) Prove that $\mathcal{O}_{K,S}^{\times}/\mathcal{O}_{K}^{\times}$ is a free \mathbb{Z} -module of rank #S. Hint: Use the finiteness of the class group – principal ideals are easier to factor.
- 5. A Salem number is a real algebraic integer $\alpha > 1$ such that $|\sigma(\alpha)| \leq 1$ for all of its conjugates, with equality achieved at least once. Find an example.