18.786 Problem Set 8 - Spring 2008 Due Thursday, May 1 at 1:00

- 1. Exercise 3 on page 118 of Janusz.
- 2. Exercise 5 on page 119 of Janusz.
- 3. Exercise 7 on page 119 of Janusz.
- 4. (a) Show that if $|\bullet|_1, \ldots, |\bullet|_n$ are inequivalent absolute values on a field K, then there is an element $a \in K$ such that $|a|_1 > 1$ and $|a|_2, \ldots, |a|_n < 1$.
 - (b) For any $1 \leq r \leq n$, show that a can be chosen so that $|a|_1, \ldots, |a|_r > 1$ and $|a|_{r+1}, \ldots, |a|_n < 1$.
 - (c) If $K = \mathbb{Q}$, reinterpret part (a) as a statement about rational numbers (remember to include the norm $|\bullet|_{\infty}$ in your discussion). Illustrate with an example.
- 5. Determine whether or not each of the integers $8, 9, \ldots, 13$ are square in \mathbb{Z}_7 . For each of the squares $m \in [8, 13]$, find the 7-adic expansion of \sqrt{m} .
- 6. Define the *n*-adic norm for composite *n* analogously to the *p*-adic ones, so $|\frac{a}{b} \cdot n^r|_n := n^{-r}$, where $n \nmid a, b$. Let \mathbb{Z}_n be the completion of \mathbb{Z} with respect to this norm.
 - (a) Show that \mathbb{Z}_{10} is not an integral domain (i.e., it has zero divisors).
 - (b) Can you find a composite n such that \mathbb{Z}_n still is an integral domain?
- 7. Use Hensel's lemma to prove that -9 has a cube root in \mathbb{Q}_{10} .