1. Evaluate the integral

$$\int_0^2 \int_1^2 \int_{2y-2}^2 2x e^{z^2 x} \, dz \, dy \, dx$$

by switching the order of integration to dy dz dx. (Ans: $\frac{e^8}{8} - 1$)

2. a) Compute the moment of inertia Iz for the solid bounded by z = 0, z = x² + y² and x² + y² = a² (assume constant density δ). (Ans: πρa⁶/₃)
b) Compute the volume of a prism of height b and a circular base of radius a. Hint: Place the base

b) Compute the volume of a prism of height b and a circular base of radius a. *Hint: Place the base on the* (x, y) *plane, and the peak at* (0, 0, b). (Ans: $\frac{\pi a^2 b}{3}$)

Gravitation Facts:

• The gravitational force of a point mass m_2 acting on a mass m_1 is given by

$$\frac{Gm_1m_2}{|\mathbf{r}|^2}\,\mathbf{\hat{r}},$$

where **r** is a vector pointing from m_1 to m_2 , and $\hat{\mathbf{r}}$ is its unit direction vector.

- A spherical shell of uniform density may be viewed as a point mass located at its center when calculating the gravitational force on a mass outside the shell.
- A mass located entirely inside a spherical shell of uniform density experiences no net gravitational force (in this case, the shell must be hollow).

3. A sphere of radius *a* and density δ is placed in the center of a spherical shell of density $\frac{\delta}{5}$, whose inner radius is 2*a*, and whose outer radius is 3*a*. A point of mass *m* is placed outside of the shell, at a distance *r* from the shared center of the spheres.

a) What is the total gravitational force felt by the inner sphere? $(Ans: \frac{4\pi Gma^3}{3r^2})$

b) What is the total gravitational force felt by the point mass? $(Ans: \frac{8\pi Gma^3}{3r^2})$

4. a) A hemisphere with radius *a* and uniform density δ is placed with its center at the origin. Find the force it exerts on a mass of *m* placed at the origin. (*Ans:* $\pi maG\delta \hat{\mathbf{k}}$.)

b) Now suppose that the hemisphere has density $\delta(x, y, z) = x^2 + y^2$ and find the resulting force. (Ans: $\frac{\pi m a^3 G \delta}{6} \hat{\mathbf{k}}$.)