MATH 18.02A - Feb. 14 Recitation

1. Sketch the following vector fields:

- a) $\mathbf{F}(x, y) = y \, \mathbf{\hat{i}} x \, \mathbf{\hat{j}}$. (Ans: Clockwise rotation) **b)** $\mathbf{G}(x, y) = \sin x \mathbf{\hat{i}}.$
- c) $\mathbf{H}(x, y) = \mathbf{\hat{i}} + y(1 y) \mathbf{\hat{j}}.$

2. a) Let c be the clockwise, circular path of radius 2 between the points $(\sqrt{2}, \sqrt{2})$ and $(-\sqrt{2}, \sqrt{2})$, and define a vector field by $\mathbf{F}(x,y) = y \,\mathbf{\hat{i}} - x \,\mathbf{\hat{i}}$. Calculate $\int_{\mathbf{c}} \mathbf{F} \cdot d\mathbf{r}$. (Ans: 2π) b) Explain the answer to a) geometrically.

c) If $\mathbf{c}(t) = (1, t^2, t)$ for $0 \le t \le 2$, calculate the line integral

$$\int_{\mathbf{c}} \sin y \, dx + \frac{z^2}{4} \, dy + 2ze^y \, dz. \qquad (Ans: 1+e^4)$$

3. Define the vector field $\mathbf{F}(x,y) = \frac{1}{x} \mathbf{\hat{i}} + \frac{1}{y} \mathbf{\hat{j}}$, and calculate the line integral for the following paths between (1, 1) and (2, 4):

- **a)** $\mathbf{c}(t) = (1 + t, 1 + 3t)$ for $0 \le t \le 1$. (Ans: $3 \ln 2$) **b)** $\mathbf{c}(t) = (t, t^2)$ for $1 \le t \le 2$. (Ans: $3 \ln 2$)