MATH 18.02A - Feb. 26 Recitation

1. a) Show that $\oint_{\mathbf{c}} -x^4 y^3 dx + 2xy^2 dy$ is always positive for a simple, closed curve **c**.

b) Suppose that \mathbf{c} lies in the second quadrant ($x \le 0, y \ge 0$). What is the sign of $\oint_{\mathbf{c}} xy^2 dx - x^4 y dy$? (Ans: positive)

2. a) Use Green's Theorem to find the area between the curves y = x² and x = y³. (Ans: ⁵/₁₂) **b)** Find the area bounded by the x-axis and one arch of the cycloid

 $x = \theta - \sin \theta, \qquad y = 1 - \cos \theta, \qquad 0 \le \theta \le 2\pi.$ (Ans: 4π)

Remark. Green's Theorem can simplify the calculation of the area bounded by a simple, closed curve. In particular,

$$\iint_R 1 \, dA = \oint_{\partial R} -y \, dx = \oint_{\partial R} x \, dy = \frac{1}{2} \oint_{\partial R} -y \, dx + x \, dy.$$

3. a) Find the path c that maximizes

$$\int_{\mathbf{c}} x^2 y \, dx + (x - xy^2) \, dy.$$

(*Hint: Use Green's Theorem*) (Ans: Circle of radius 1) b) Calculate the maximum value. (Ans: $\frac{\pi}{2}$)