MATH 18.02A - Feb. 28 Recitation

1. Let **c** be a positively oriented curve that begins somewhere along the positive y-axis and ends at (3,0), staying in the first quadrant at all times. Calculate the flux of $\mathbf{F} = x^4 y \,\mathbf{\hat{i}} + (-2x^3y^2 - 2x\,\mathbf{\hat{j}})$ across **c**. (Ans: -9)

Hint: Use Green's Theorem on the closed loop consisting of c and segments of the x- and y-axes.

2. Consider the field $\mathbf{F} = \frac{x}{r^2} \mathbf{\hat{i}} + \frac{y}{r^2} \mathbf{\hat{j}}$, and suppose that **c** is a simple closed curve that surrounds the origin. Let \mathbf{c}_1 be a large circle that completely contains **c**, and use Green's Theorem on the region between **c** and \mathbf{c}_1 to calculate the flux across **c**. (Ans: 2π)

Remark. If $\mathbf{F} = r^n (x \, \hat{\mathbf{i}} + y \, \hat{\mathbf{j}})$, then the divergence is non-zero for all $n \neq -2$. When n = -2, the divergence is zero everywhere except at the origin, where there is a source of rate 2π (compare with the calculations in problem 2).