MATH 18.02A - Mar. 7 Recitation

1. Let \mathbf{c}_1 be the triangular path through the points in order (2,0,3), (2,2,3) and (0,3,3), and let \mathbf{c}_0 be the path through (2,0,0), (2,2,0) and (0,3,0). Find the difference between the line integrals $\oint_{\mathbf{c}_1} \mathbf{F} \cdot d\mathbf{r}$ and $\oint_{\mathbf{c}_0} \mathbf{F} \cdot d\mathbf{r}$ for the field

$$\mathbf{F} = \left(x^4 \cos \sqrt{1 + x^3} + zy^2\right) \,\mathbf{\hat{i}} + \left(2xyz - 2x\right) \,\mathbf{\hat{j}} + \left(xy^2 - 3^{z^2 + 1}\right) \,\mathbf{\hat{k}}.$$

Hint: Using Stokes' Theorem, it isn't necessary to actually compute any line integrals. (Ans: 0)

2. a) Let S be the triangle bounded by (0,0,0), (0,2,0) and (0,0,1) with orientation $\hat{\mathbf{n}} = \hat{\mathbf{i}}$. Calculate the flux of $\mathbf{F} = (xyz + 2y) \hat{\mathbf{i}} + (-\sin(x-y) + z^3y^2) \hat{\mathbf{k}}$. (Ans: $\frac{4}{3}$)

b) Calculate the flux $\iint_S \mathbf{F} \cdot \hat{\mathbf{n}} \, dA$ of $\mathbf{F} = e^{-y} \hat{\mathbf{i}} + z \hat{\mathbf{j}} + (x^2 - 2) \hat{\mathbf{k}}$ through the surface S in the first quadrant that is bounded by $x^2 + y + z = 2$ and oriented so that the normals point away from the origin.

Hint: Write the surface as a graph z = f(x, y) and recall that in this case the normal differential is $\hat{n} dA = d\mathbf{S} = -f_x \,\hat{\imath} - f_y \,\hat{\jmath} + \hat{k} \cdot \left(Ans : \frac{-4\sqrt{2}}{3} - 1\right)$

c) Let S be the lower hemisphere ($z \leq 0$) of radius a with normals pointing towards to the origin. Calculate the flux of $\mathbf{F} = \hat{\mathbf{k}}$.

Hint: The outward normal differential for points (x, y, z) on a sphere of radius a is always $\hat{n} dA = a^2 \sin \phi \left(\frac{x \,\hat{\imath} + y \,\hat{\jmath} + z \,\hat{k}}{a}\right)$, where ϕ is the spherical coordinate of the point (x, y, z). (Ans: πa^2)