MATH 18.02A - Mar. 12 Recitation

- 1. A surface S is defined to be the positive $(z \ge 0)$ graph of a function z = f(x,y), and the intersection with the (x,y) plane is a closed curve that bounds with area A. Calculate $\iint_S \mathbf{F} \cdot \hat{\mathbf{n}} \, dA$ for the field $\mathbf{F} = (3y^4 + 2x)\,\hat{\mathbf{i}} + (\cos z e^2x 2y)\,\hat{\mathbf{j}} + 3\,\hat{\mathbf{k}}$. Hint: Use the Divergence Theorem. (Ans: 3A)
- **2.** a) Let R be the region bounded by $z^2 = x^2 + y^2$ and $z = \sqrt{1 x^2 y^2}$. Calculate the total flux outward through the boundary of R of the field $\mathbf{F} = -x^3 \,\hat{\mathbf{i}} y^3 \,\hat{\mathbf{j}}$. $\left(Ans: \frac{\pi}{\sqrt{2}} \frac{4\pi}{5}\right)$
- **b)** Calculate the flux $\iint_S \mathbf{F} \cdot \hat{\mathbf{n}} \, dA$ of $\mathbf{F} = z \, \hat{\mathbf{i}} y \, \hat{\mathbf{j}} + (x z) \, \hat{\mathbf{k}}$ through the surface S in the first quadrant that is bounded by 2x + y + z = 2 and oriented so that the normals point away from the origin. $\left(Ans: \frac{-5}{3}\right)$
- c) Let \dot{S} be the lower hemisphere $(z \leq 0)$ of radius a with normals pointing towards to the origin. Calculate the flux of $\mathbf{F} = \hat{\mathbf{k}}$. $(Ans: \pi a^2)$