18.02A Exam 1 - Spring 2007

Friday, Feb. 23

Name:

Directions: Answer all questions (pages are printed front and back). Read the problem statements *carefully*, and show your work for full credit. No books, notes, calculators, or aids of any kind are allowed.

	Score
Problem 1 (20 pts)	
Problem 2 (20 pts)	
Problem 3 (20 pts)	
Problem 4 (20 pts)	
Problem 5 (20 pts)	
Total (100 pts)	

Problem 1. (*Short answer; 5 pts each*) You are not required to show detailed work for these questions.

a) Suppose that $\mathbf{F} = \vec{\nabla} f(x, y)$, and that **c** is a level curve of f (so that f(x, y) has a constant value along **c**). Find $\int_{\mathbf{c}} \mathbf{F} \cdot d\mathbf{r}$ (*Hint: No calculation is necessary*).

b) A triple integral is to be evaluated using the change of variables $u = x^2 + z, v = x \sin y$, and w = y - 2z. Fill in the entries in the blank matrix:

$$\iiint_{R_{xyz}} f(x, y, z) \, dV = \iiint_{R_{uvw}} g(u, v, w) \left| \begin{array}{ccc} & & & \\$$

c) Let **F** be a constant field $a \mathbf{\hat{i}} + b \mathbf{\hat{j}} + c \mathbf{\hat{k}}$. Calculate

$$\int_{(x_0,y_0,z_0)}^{(x_1,y_1,z_1)} \mathbf{F} \cdot d\mathbf{r}.$$

d) At (x, y), the vector field **F** is defined by rotating the radially inward unit vector in the clockwise direction by an angle of $\frac{\pi}{2}$. Write down the explicit equations for **F**.

Problem 2. (20 pts) Evaluate the integral

$$\iint_R 2(x-3y)^2(x-y) \, dA,$$

where R is the triangle with vertices (0, 0), (1, 1), and (3, 1). (*Hint: Make the substitutions* u = -x + 3y, v = x - y.) **Problem 3.** (20 pts) Let R be the region bounded by the surface $z = 4 - x^2 - y^2$ and the (x, y) plane. Find the total mass if the density function is $\delta(x, y, z) = \sqrt{x^2 + y^2}$.

Problem 4. (20 pts: 5+10+5) Consider the vector field

$$\mathbf{F} = (6x^5y^2 + \cos x - 3e^y)\,\mathbf{\hat{i}} + (ax^6y - 3xe^y)\,\mathbf{\hat{j}}.$$

a) Find the value(s) of a such that **F** is conservative.

b) For the value(s) of a determined in part a), find the potential function(s).

c) Find the work done by **F** along the path $\mathbf{c}(t) = (1 - t^2, t)$ for $1 \le t \le 2$.

Problem 5. (20 pts: 15+5)a) One of the following fields is not conservative:

$$\mathbf{F} = 2x^2 \,\mathbf{\hat{j}},$$

$$\mathbf{G} = (3x^2y - \sin x) \,\mathbf{\hat{i}} + x^3 \,\mathbf{\hat{j}}.$$

Determine which one it is, and verify this by finding two different paths with unequal line integrals.

b) Suppose that $\mathbf{F} = (g(x) + h(y)) \mathbf{\hat{j}}$ for some differentiable functions g and h. If \mathbf{F} is known to be conservative, then what can be concluded about g(x) and h(y)? (*Hint: There is a very strong restriction on at least one of these functions*)