18.02A Exam 1 Review Solutions - Spring 2007

1. (Changes of variables )
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a) The Jacobian is % = |14 e i. The region is the triangle bounded by
(0,0),(1,0), and (0,1), so the integral is
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b) The Jacobian is ‘ “Z

0,u =2,v =0, and v = 2, so the integral i
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% The four boundary lines translate to u =
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c) Now the Jacobian is

owovw) | |1 0|
wya| 120 Ty
7y7 0 z y y
The (a: y, z) first octant is also bounded by w, v, w > 0, and the other two curves become
u+v? =1 and w = 2. Finally, z = 2v and y = ¥ 2

, so the integral is
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2. (Triple integrals )

a) The bounding planeis £ + ¥ + 2 =1. Let u = £, = ¥,w = Z. Then
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By the prism formula, the volume of the region is 2¢

%, 80 T = 7. Symmetry implies that
ab c
the center of mass is <— - —> .
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b) Using cylindrical coordinates,
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¢) The mass of the first sphere is twice that of the top hemisphere. In spherical coordinates,

this is
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The second sphere has mass density r2, so the total mass is
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3. (Vector fields )
a) See Figure 1
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Figure 1: F = |z|1+ |y|]

b) See Figure 2.

c) See Figure 3
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Figure 3: F = (z +y)i+ (y —2)j

d) Va2 +9?].

e) yigl‘j or —yi2+xj‘
4. (Line integrals )

a) Using the obvious parameterizations for the coordinate axes, and (¢, t) for the diagonal,
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/F-dr:/ —xdm+/ —t2dt—|—/(t—t)—t2dt
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0 2

b) In general, for a constant field F = a, the line integral along a straight line from Py to
P is the projection of the path in the direction of a scaled by the magnitude of a. In
other words, if a is the vector from Py to Py, then the line integral is just a - v.




Here, the first path follows the vector (2,0), so the integral is

(3.0)
/ F-dr=(1,-1)-(2,0) =[2]
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The second path has integral
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c) For the first path,
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Parameterize the second path as (t, —t) to get
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/ F-dr:/ 1—(=1)dt =[4]
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d) This is a straightforward evaluation:

/(x—i—sinz) dx + (4 — 2?) dy + 3y d=

C

2T
= / [(sint + sint) cost + (4 — sin® t) sint — 3 cos t] dt = @ (by periodicity).
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5. (Conservative/Path-independent/Gradient fields )

a) i) In the clockwise direction, starting from (2,1),
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ii) since curl F = —2z + 1 (or is undefined) depending on the sign of y.

b) Must have curl F = % - (;—22) = 0, but this is impossible; there are no values of a.

¢) Evaluate at the endpoints, Let F = V(22 + tan!(zy)), and evaluate
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/ F-dr=(3+tan"'V3) —tan™10 =3+
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d) The integral is path independent, since

curl = g (cos (%) oS (%y) — cos (%) oS (%y)) =0.

Thus the path may be replaced by straight lines following the coordinate axes, so
/Csin <%) cos (%) dx + sin (%) cos (%) dy
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6. (Potential functions)

a) A potential function is f(z,y, 2) =|3zcosz — 2(xz 4+ y)? + ¢|.

b) Need curlF = —2y — (—2y) = 0, which is true for all values of a. Both the algebraic and
integration methods require the use of integration by parts, and the potential functions
are

f(x,y) =

a
2 ry? e if 0 = 0.

{Cos(aa:)—i—a: sin(az) in2 N if a 7& 0,

c) After verifying that the curl is zero,
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