
MATH 18.02A - Problem Set 5 Solutions

Spring 2007

Part I - Problem 3D-9.
Recall that detA ·det B = det A · B for matrices A and B with the same dimensions. Thus
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However, keeping in mind that the pair (x, y) may be viewed as both independent variables
and also as functions of (u, v) (and vice versa), the multivariable chain rule implies that
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This shows that the first column of the Jacobian is ( 1
0
) , and the second column can be ac-

counted for similarly, showing that the overall matrix is ( 1 0
0 1

) .

Part II - Problem 1.
This integral has a relatively simple integrand, but it is over a very complicated region

Rxy, which suggests that a change of variables should be used to simplify the domain. Set

u =
x

2
− y, v = 2x + y,

so that Ruv is now bounded by the equation u2 + v2 = 1, and the integrand can be rewritten
as x = 2

5
(x + y). The Jacobian is
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so the integral becomes
∫∫

Rxy

x dA =
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Finally, since Ruv is bounded by a circle of radius 1 in (u, v) coordinates, it makes sense
to convert to polar coordinates

u = r cos θ, v = r sin θ.

The integral is now
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3
dθ = 0 ,

since both cos θ and sin θ integrate to zero over a period of 2π.
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Remark. Although it is not necessary to understand the geometry in order to evaluate the
integral, it will help illuminate the previous work. The integral in this problem can be viewed
as the moment Mx of the region R (i.e., the weighted sum of all x-values).

The accompanying graph shows the shape of the region, which can be understood by
considering the two lines u = 0 and v = 0. As seen in the picture, the effect of the substitution
is to rotate the coordinate axes, where R is merely an ellipse. However, this region is clearly
symmetric about the origin in the (x, y) plane, so the average x value must be 0, as found
above.

Part II - Problem 2.
a)The volume of the tent is easily computed with cylindrical coordinates:
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b) The average density will be the quotient of the total mass of smoke and the volume
from part a). The mass is again found with an integral in cylindrical coordinates:
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Therefore, the average smoke density is

M

V
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Part II - Problem 3.
a) The equation of the ellipsoid is closely related to a sphere, and the change of variables

X =
x

a
, Y =

y

b
, Z =

z

c

makes the relationship clear. The Jacobian here is very simple, as
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Therefore the volume is
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where the region RXY Z is a sphere of radius 1. Therefore, converting to spherical coordinates
in X,Y, and Z gives
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b) By symmetry, the average x and y values are both zero. Following the given suggestion,
the z-moment for the half-ellipsoid centered at the origin (and truncated by z ≥ 0) is
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Hence the average z-value for this half-ellipsoid is
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and flipping this gives that the z-value for the solid in question is c − 3c
8

= 5c
8
. Ultimately,

the center of mass is

(

0, 0,
5c

8

)

.

Part II - Problem 4.
a) The path can be parameterized by c(t) = (x(t), y(t)) = (t, 0) for 0 ≤ t ≤ 1, so the line

integral is
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b) Now the path has two parts, which can be written as

c1(t) =

{

(t, t) for 0 ≤ t ≤ 1,

(1, 2 − t) for 1 ≤ t ≤ 2.



The line integral is
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c) Along the middle segment of this path, there is a constant value y = −1. This means

that F is undefined along this segment, and thus the overall line integral is undefined.

Remark. The field F is conservative in its domain, but part c) illustrates the fact that path
independence only applies to paths that stay within the definition of F.

Part II - Problem 5.
The striking feature of this vector field is that the ̂ component depends on the x coordinate,

and so the effect of F on movement in the y-direction will depend on the x position. A simple
example to test this is the two paths between P0 = (0, 0) and P1 = (1, 1) that travel in the
coordinate directions in different orders.

Specifically, define
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which are unequal, and thus the line integral is not path independent.


