18.02A Problem Set 7 - Spring 2007

Due Friday, Mar. 2 at 2:00

Part I (15 points)

Lecture 49. (Tues., Feb. 27) Flux; Normal form of Green's Theorem; Applications. Read: Notes V3, V4 Work: 4E-1ab, 3; 4F-3, 5
Lecture 50. (Thurs., Mar. 1) Surface integrals; Surface area. Read: Notes V9 (ignore flux) Work: 6B-2, 3, 4, 12
Lecture 51. (Fri., Mar. 2) Divergence Theorem.

Read: Notes V10

Part II (10 points)

Try each problem alone for 15 minutes before collaborating, and write up solutions independently. The problems are given in order according to the lecture schedule above.

Problem 1. (3 pts: 2+1) In this problem, all curves **c** are restricted to lie only in the first quadrant $(x, y \ge 0)$.

a) Find the positively oriented curve that maximizes

$$\int_{\mathbf{c}} \left(xy + \frac{y^2}{2} \right) \, dx + (2x - ye^y) \, dy.$$

(*Hint: Use Green's Theorem in tangential form to replace the line integral with a double integral*)

b) Calculate the maximum value of the integral along the path found in part a).

Problem 2. (2 pts: 1+1) Consider the flow field

$$\mathbf{F} = (-x + 2y\sin x - \sqrt{1 + y^3})\,\mathbf{\hat{i}} + (e^x + y^2\cos x + 3y)\,\mathbf{\hat{j}}.$$

a) Calculate the divergence of **F**.

b) Let **c** be the clockwise path around the triangle with vertices (0,0), (0,b), and (a,b). Use Green's Theorem to calculate the total flux across **c**.

Problem 3. (2 pts) Calculate the flux of $\mathbf{F} = (4xy^3 + 2xy + 3y^2) \mathbf{\hat{i}} + (2 - y^4) \mathbf{\hat{j}}$ around the semicircle of radius 1 that travels in the clockwise direction from (0, 1) to (0, -1). (*Hint: Use Green's Theorem in normal form; be aware that the given curve is not closed.*)

Problem 4. (3 pts: 2+1) a) A torus is the "doughnut" shape that is obtained as the surface of revolution of a disc. In particular, suppose that the center of a disc of radius 1 is placed a distance R from the z-axis, and is then rotated about this axis. Write down a parameterization for this surface.

(*Hint: Start with a circle in the* (y, z) *plane parameterized by* u :

 $y = R + \cos u, \qquad z = \sin u, \qquad 0 \le u \le 2\pi.$

Now use a new parameter v to rotate around the z-axis.)

b) Write (but do not evaluate!) the surface integral that calculates the surface area of the torus. (*Note: The integral evaluates to* $4\pi^2 R$.)