Problem Solving Seminar - Fall 2012 Oct. 29

1. The Fibonacci numbers are defined by $F_1 = 1, F_2 = 1$, and

$$F_n = F_{n-1} + F_{n-2}$$
 for $n \ge 3$.

(a) Prove that

$$F_n = F_{n-1} + F_{n-3} + F_{n-5} \dots + \begin{cases} F_1 & \text{if n is even,} \\ F_2 & \text{if n is odd.} \end{cases}$$

(b) Prove that for $n \ge 1$,

$$F_1^2 + F_2^2 + \dots + F_n^2 = F_n F_{n+1}$$

Hint: There is an easy geometric proof...

- (c) Let A_n denote the number of ways of tiling a $2 \times n$ rectangle with dominoes of either orientation (i.e., 1×2 and 2×1 rectangles). Find a formula for A_n in terms of Fibonacci numbers.
- 2. Without using a calculator, determine which quantity is larger:

$$\sqrt{20} + \sqrt{79}$$
 or $\sqrt{19} + \sqrt{80}$?

- 3. Suppose that n lines are drawn in the plane. This separates the plane into some number of distinct regions, whose boundaries are determined by the lines.
 - (a) What is the minimum number of regions defined by n lines?
 - (b) What is the maximum number of regions?
- 4. Evaluate $\sqrt{2 + \sqrt{2 + \sqrt{2 + \dots}}}$. Hint: Consider the sequence defined by $a_1 = \sqrt{2}$ and $a_n = \sqrt{2 + a_{n-1}}$ for $n \ge 2$.
- 5. [2000 A-1] Let A be a positive real number. What are the possible values of $\sum_{j=0}^{\infty} x_j^2$, given

that x_0, x_1, \ldots are positive numbers for which $\sum_{j=0}^{\infty} x_j = A$?

6. [2004 A-3] Define a sequence $\{u_n\}_{n=0}^{\infty}$ by by $u_0 = u_1 = u_2 = 1$, and thereafter by the condition that

$$\det \left(\begin{array}{cc} u_n & u_{n+1} \\ u_{n+2} & u_{n+3} \end{array}\right) = n!$$

for all $n \ge 0$. Show that u_n is an integer for all n. (By convention, 0! = 1.)