Problem Solving Seminar - Fall 2013 Dec. 4

- 1. (a) Let f be a real-valued function on the plane such that for every equilateral triangle ABC, f(A) + f(B) + f(C) = 0. Prove that f(P) = 0 for every point P. *Hint: Tile a hexagon with equilateral triangles.*
 - (b) [1986 A1] Let f be a real-valued function on the plane such that for every square ABCD in the plane, f(A) + f(B) + f(C) + f(D) = 0. Does it follow that f(P) = 0 for all points P in the plane?
- 2. (a) A stair-step path is made up of line segments on integer points (x, y) that move either one unit right (to (x + 1, y)) or one unit up (to (x, y + 1)). How many stair-step paths are there from (0, 0) to (m, n)?
 - (b) [2005 A2] Let $S = \{(a, b) | a = 1, 2, ..., n, b = 1, 2, 3\}$. A rook tour of S is a polygonal path made up of line segments connecting points $p_1, p_2, ..., p_{3n}$ is sequence such that
 - (i) $p_i \in S$,
 - (ii) p_i and p_{i+1} are a unit distance apart, for $1 \le i < 3n$,
 - (iii) for each $p \in S$ there is a unique *i* such that $p_i = p$.

How many rook tours are there that begin at (1, 1) and end at (n, 1)?

- 3. (a) Prove that $\sqrt{n+1} \sqrt{n}$ is arbitrarily small as $n \to \infty$.
 - (b) [1990 A2] Is $\sqrt{2}$ the limit of a sequence of numbers of the form $\sqrt[3]{n} \sqrt[3]{m}$, where n and m are integers?
- 4. (a) Show that the number of ways of writing $10 = a_1 + a_2 + a_3$, where $a_1 \ge a_2 \ge a_3 \ge 0$ are integers, is the same as the number of ways of writing $10 = b_1 + b_2 + b_3 + b_4 + b_5$, where $b_1 \ge b_2 \ge b_3 \ge b_4 \ge b_5 \ge 0$ are integers. How does this generalize?
 - (b) [2005 B4] For positive integers m and n, let f(m, n) denote the number of n-tuples (x_1, x_2, \ldots, x_n) of integers such that $|x_1| + |x_2| + \cdots + |x_n| \le m$. Show that f(m, n) = f(n, m).
- 5. (a) Suppose that P₁, P₂,..., P_n are points in the plane, no three of which are collinear. Prove that there is a polygon with these points as its vertices. *Hint: Consider the path that traverses the points in an arbitrary order. If it is not a polygon, then there are two segments that cross each other. Can you construct a new path that removes this crossing?*
 - (b) Suppose that P_1, \ldots, P_n and Q_1, \ldots, Q_n are points in the plane, no three of which are collinear. Prove that there are n line segments that each join some P_i and Q_j such that none of the segments cross.
 - (c) **[2005 B6]**

Let $n \ge 4$, and suppose that P_1, P_2, \ldots, P_n are randomly, uniformly and independently, chosen points on a circle. Consider the convex *n*-gon whose vertices are the P_i . What is the probability that at least one of the vertex angles is acute?

Challenge.

1. You are the last person in line to board a full airplane flight with 100 seats. Each person has an assigned seat, but the first person to board drops his boarding pass and takes a seat at random. Each subsequent passenger than takes his/her assigned seat, or if that seat is already taken, picks a random empty seat. What is probability that when you board the final empty seat is your assigned seat?