Upcoming dates:

- Virginia Tech Regional Mathematics Contest. Saturday, Oct. 25, 9:00 11:30 A.M., in Lockett Hall. Sign-up deadline: Oct. 1.
- William Lowell Putnam Mathematical Competition. Saturday, Dec. 6, 9:00 A.M. 5:00 P.M., in Lockett Hall. Sign-up deadline: Oct. 8.

<u>Contact</u>: mahlburg@math.lsu.edu <u>Website</u>: www.math.lsu.edu/~ mahlburg/teaching/2014-Putnam.html

Problem Solving Seminar - Fall 2014 Sep. 17

1. Prove that every difference in the following list is a perfect square:

$$11 - 2, \\ 1111 - 22, \\ 111111 - 222, \\ \vdots$$

2. Denote an integer expressed in base b by $(d_k d_{k-1} \cdots d_1 d_0)_b$. For example, in base 3 we have

$$221_3 = 2 \cdot 3^2 + 2 \cdot 3^1 + 1 \cdot 3^0 = 25.$$

(a) Determine which is larger:

 12345_8 or 54321_6 ?

(b) Evaluate the product

 $22\cdots 2_5\times 22\cdots 3_5,$

where the two numbers contain (n-1) 2s followed by a 2 and a 3.

(c) Evaluate the product

 $44\cdots 4_9 \times 44\cdots 5_9,$

where the two numbers contain (n-1) 4s followed by a 4 and a 5.

(d) Factor the integers

 $2_9, \quad 222_9, \quad 22222_9, \ldots,$

where each number contains an *odd* number of 2s.

3. A popular style of arithmetic puzzle is a *Cryparithm*, where each letter is replaced by a digit so that the resulting expression is true. Solve the following:

								\mathbf{S}	Ι	Х	Т	Y
	М	0	Ν	Е	Y	(b) +	-			Т	Е	Ν
(a)	+	Μ	0	R	Е	(b)				Т	Е	Ν
		\mathbf{S}	Е	Ν	D			F	Ο	R	Т	Υ

4. A woman has an extraordinary Social Security number, which contains each of the nine digits 1 to 9 exactly once. Furthermore, the first two digits (read left-to-right) are a multiple of 2, the first three digits are a multiple of 3, and so on, until the complete number is a multiple of 9.

How many possible Social Security numbers have these properties?

5. Let N be the positive integer with 2014 decimal digits, all of them 1; that is,

$$N = 111 \cdots 11.$$

Let M be the largest integer that is smaller than or equal to \sqrt{N} Find the sum of the digits of M.

6. [Putnam **1998 B5**] Let N be the positive integer with 1998 decimal digits, all of them 1. Find the thousandth digit after the decimal point of \sqrt{N} .

Challenge.

1. (a) Prove that there are no perfect squares among the integers that contain a single digit repeated multiple times; in particular, these are the numbers

(b) If the numbers are written in base b instead of base 10, then there are perfect squares. For example, there is a base b such that 11_b and 11111_b are square - find such a b? Describe the general behavior as thoroughly as you can.