- Virginia Tech Mathematics Contest. Sat., Oct. 25. Sign-up deadline: Oct. 1.
- Putnam Mathematical Competition. Sat., Dec. 6. Sign-up deadline: Oct. 8.

Website: www.math.lsu.edu/~mahlburg/teaching/2014-Putnam.html

Problem Solving Seminar - Fall 2014 Oct. 1

1. Calculate the following antiderivatives (indefinite integrals):

(a)
$$\int \cos(2x) dx$$
,
(b) $\int \frac{1}{x(x+1)} dx$,
(c) $\int (x^4 + x^2) \sqrt{x^2 + 2} dx$,
Hint: Write $x^4 + x^2 = x(x^3 + x)$ and pull the x inside the square root.
(a) Evaluate $\int_{-1}^{1} xe^{x^2} dx$.

- 2. (a) Evaluate $\int_{-1} x e^{x^2} dx$. Hint: You do not need an antiderivative!
 - (b) Evaluate $\int_0^1 2x e^{x^2} dx$.
 - (c) [Gelca-Andreescu 444] $\int (1+2x^2) e^{x^2} dx.$
- 3. (a) Evaluate the integral

$$\int_0^2 \frac{x^2}{2} + \sqrt{2x} \, dx.$$

(b) If b > 0, evaluate the integral

$$\int_0^b \frac{x^2}{b} + \sqrt{bx} \, dx.$$

- (c) Let $f(x) := \frac{x^2}{b}$. If $x \ge 0$, what is the inverse function $f^{-1}(x)$? (Recall that this function satisfies $f(f^{-1}(x)) = x$).
- (d) Evaluate

$$\int_{0}^{\sqrt{\frac{\pi}{2}}} \sin\left(x^{2}\right) + \sqrt{\frac{2}{\pi} \arcsin\left(\sqrt{\frac{2}{\pi}}x\right)} \, dx$$

Hint: Show that the integral is of the form $\int_0^b (f(x) + f^{-1}(x)) dx$ and draw a picture.

- 4. (a) Find the general solution f(x) to the differential equation $f' + f = e^{-x}$. Hint: Multiply by the integration factor e^x .
 - (b) [VTRMC **2007** #3] Solve the initial value problem $\frac{dy}{dx} = y \ln y + ye^x$, y(0) = 1 (i.e., find y as a function of x).

- 5. Let $f(x) := x \frac{1}{2}$.
 - (a) Show that $\int_0^1 f(x) \, dx = 0$.
 - (b) Find a value of $0 < \alpha < 1$ such that

$$\left| \int_0^\alpha f(x) \, dx \right| = \frac{1}{8}.$$

6. [Putnam **2007 B2**] Suppose that $f : [0,1] \to \mathbb{R}$ has a continuous derivative and that $\int_0^1 f(x) dx = 0$. Prove that for every $\alpha \in (0,1)$,

$$\left| \int_0^\alpha f(x) \, dx \right| \le \frac{1}{8} \max_{0 \le x \le 1} \left| f'(x) \right|.$$

Challenge.

1. Suppose that $k \ge 1$ is a fixed integer. For any integer $n \ge 1$, let

$$H_k(n) := \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{kn}.$$

- (a) Show that $\frac{k-1}{k} \le H_k(n) \le k$ for all n.
- (b) Calculate the limit $\lim_{n\to\infty} H_k(n)$.