Problem Solving Seminar - Fall 2014 Oct. 8

Useful facts from geometry and trigonometry:

• Law of Cosines. If a triangle has sides of lengths a, b, and c, and α is the angle opposite the side of length a, then

$$a^2 = b^2 + c^2 - 2bc\cos(\alpha)$$

• Law of Sines. If β is the angle opposite b, and γ is the angle opposite c, then

$$\frac{\sin(\alpha)}{a} = \frac{\sin(\beta)}{b} = \frac{\sin(\gamma)}{c} = \frac{1}{2R};$$

where R is the radius of the circumscribed circle (which contains the vertices of the triangle).

• For all x,

$$\sin^2(x) + \cos^2(x) = 1,$$

• For all x and y,

$$\cos(x - y) = \cos(x)\cos(y) + \sin(x)\sin(y)$$

- 1. (a) What is the area of an isosceles triangle with side lengths (5, 5, 6)?
 - (b) What is the area of an isosceles triangle with side lengths (5, 5, 8)?
 - (c) Are there other examples of two triangles with integer side lengths and the same area?
- 2. (a) Find the radius of the circumscribed circle for an equilateral triangle with side length 3.
 - (b) Find the radius of the circumscribed circle for a triangle with side lengths (2,3,4).
- 3. Show that there are (not necessarily convex) polygons P_3 , P_4 , P_5 , P_6 , P_7 , P_8 , and P_9 with the following properties:
 - All of the sides have integer lengths and are at integer coordinates,
 The area of P_j is j,
 The perimeter of P_j is 12.

Hint: Start by finding P_9 *and* P_6 *.*

- 4. Let O be the center of two concentric circles, of radii 4 and 8. A line from O hits the outer circle at the point B, and the inner circle at the point A. There is another point C on the outer circle such that |AC| = 5. Find |BC|.
- 5. (a) Find constants a and θ such that

$$\sin(x) + \cos(x) = a\cos(x - \theta).$$

- (b) [Gelca-Andreescu **659**] Find the range of the function $f(x) = (\sin(x) + 1)(\cos(x) + 1)$.
- 6. [VTRMC **2013** #2] Let *ABC* be a right triangle with $\angle ABC = 90^{\circ}$, and let *D* on *AB* be such that |AD| = 2|DB|. What is the maximum possible value of $\angle ACD$?

7. [Putnam 1978 B1] Find the area of a convex octagon inscribed in a circle that has four consecutive sides of length 3 and the remaining four sides of length 2. Give the answer in the form $r + s\sqrt{t}$, where r, s, and t are integers.

Challenge.

- 1. For $n \ge 3$, let R_n be a regular polygon (so all sides are equal) with n vertices inscribed in a circle of radius 1.
 - (a) Calculate $A_n :=$ Area of R_n .
 - (b) Use similarity of various triangles within the regular pentagon to prove that $\cos(36^\circ) = \frac{1+\sqrt{5}}{4}$. Use this to calculate A_5 as an algebraic expression (i.e., an exact value including fractions and square roots, but no sines or cosines).
 - (c) What is $\lim_{n\to\infty} A_n$? Prove your answer.