MATH 7230 Homework 3 - Spring 2014
Due Thursday, Mar. 6 at 1:30

The notation “I-K” is shorthand for the textbook.

1. In this problem you will prove that if ¢ is prime, then there are infinitely many primes
congruent to 1 mod ¢, filling in the details from I-K Section 2.3.

(a) For prime g, the ¢g-th cyclotomic polynomial is

9 -1
Q,(z) = p— =20 2441

Show that if p | ®4(n), then n? =1 (mod p). Recall Fermat’s Little Theorem (a special
case of Lagrange’s Theorem for finite groups), which states that n?~! = 1 (mod p) if
p1n. Conclude that ¢ | (p — 1).

(b) Suppose that pi,...,px are all primes congruent to 1 mod q. Let ny := p;---pr and
apply part (a) to conclude that there is a new prime divisor p | ®4(n) such that p =1
(mod q).

(Optional) Using more general properties of cyclotomic polynomials, this proof can be extended to

an arbitrary modulus g. For example, see:

http://ocw.mit.edu/courses/mathematics/18-781-theory-of-numbers-spring-2012/
lecture-notes/MIT18_781S12 lecl12.pdf

2. Show that the characters on G = Z/myZ x Z/msZ are given explicitly as X4, q, for all pairs
a; € Z/m;Z, where

aini + a2n2 )

Xai,az (nla n2) =€ < - o

3. Read the top half of page 44 in I-K. This problem provides a more general framework for
characters that are trivial on a subgroup.

Let G be a finite abelian group, and suppose that H < G is a subgroup. Write
Gy = {Xeélx(H)zl}.
In other words, these are the characters that restrict to the trivial character xyg on H.
(a) Prove that @H is a subgroup of G. What are @{1} and é@?
(

)
b) Prove that Gy (7/7{

(¢c) Similarly, prove that G/Gy = H.
(d) Prove the orthogonality relation

€
S x(9) =< 1]

xely 0 itgé H.

if g€ H,



(e) Part (d) implies that the indicator function for H can be written as

H
1u(g) = H > x(9).

x€Gu
Use the standard orthogonality relations on G to prove the alternative expression

Tn) = S oag) = 3 |Cﬂ| > x(hg).

heH heH xe@

Can you show that expressions are equivalent?

(Optional) If G is nonabelian, is it necessarily true that G = G?
Hint: Consider a simple group, such as G = A,.

4. If a = {a,}72 is a sequence of complex numbers, define the Dirichlet series

an,
L(s,a) = —.
n>1 n?

(a) Prove that if a is bounded, then L(s, a) converges for Re(s) > 1.

(b) Prove that if the partial sums Zﬁ:l a, are bounded, then L(s, a) converges for Re(s) >

0.
Hint: Use partial summation.

5. Recall that in the proof of Dirichlet’s Theorem we proved the following identity for the product

of all L-functions for characters of G := (Z/qZ)*:

¢(q)

= 1 o0 =TI (1) -

x mod ¢ ptq

where o(p) = ord,(p) is the order of p in G. We then concluded that L(1,x) # 0 for all

X # Xo by using a meromorphic continuation of (,4(s) to the half-plane Re(s) > 0.

In this problem you will derive a proof of the non-vanishing of these L-values that does not

require as much (or any) machinery from complex analysis.

(a) Prove that (,(1) # 0. Conclude that there is at most one x such that L(1,x) = 0.

(b) A Dirichlet character x € G is a real character if X(G) C R. A character that is not
real is complex. Prove that if x is a complex character, then L(1, x) = 0 if and only if

L(1,X) = 0. Conclude that none of these L-values are zero.
(c) Prove that Y is real if and only if x? = xo. Equivalently, x(¢?) = 1 for any g € G.
(d) It remains to show that L(1,x) # 0 for real x # xo. Define

)= 3 TN

where 7(e, ) := 1 x x.



i. Prove that 7(n,x) > 0 for all n and 7(m?,x) > 1.
Hint: Use multiplicativity.
ii. Conclude that T'(z) > logz.

iii. Use the Hyperbola Method to prove T'(z) = $L(1,x)y/z + O(1).
Hint: Write

T(z)= > f/(%

< xX(m) — 1 1 x(m)
D - D Dy D
m<y/z \/m n<- \/ﬁ n<\/5\/ﬁ\/5<m§% \/ﬁ

The first sum will be the main term; use partial summation to bound the final sum
on m.

iv. Take the limit as © — oo and conclude that L(1,x) > 0.

(Optional) Read pages 36 — 37 of I-K to learn a proof of Dirichlet’s Theorem that is more in the spirit
of the elementary proof of the Prime Number Theorem.



