
MATH 7230 Homework 4 - Spring 2014
Due Thursday, Mar. 27 at 1:30

1. If A ⊂ B ⊂ N, then the arithmetic density of A in B is

dB(A) := lim
X→∞

# {n ≤ X | n ∈ A}
# {n ≤ X | n ∈ B}

.

Similarly, assuming that B is substantial (so that
∑

n∈B
1
n = ∞), the logarithmic (Dirichlet)

density is

DB(A) := lim
s→1+

∑
n∈A

1

ns∑
n∈B

1

ns

.

In this problem you will compare the two notions of density. If the type of density is not
specified, then the statement applies to both.

(a) Prove that if A is finite, then the density of A is zero (relative to any infinite set).

(b) Prove that if A1, A2 are disjoint and have densities δ1, δ2, respectively, then A1 ∪A2 has
density δ1 + δ2.

(c) Use (a) and (b) to conclude that if A1 ∪A2 has density greater than 1, then A1 ∩A2 is
infinite.

(Optional) Let α, β be positive irrational numbers satisfying 1
α + 1

β = 1, and set

A :=
{
⌊nα⌋ | n ∈ N

}
,

B :=
{
⌊nβ⌋ | n ∈ N

}
.

Prove that A has density 1
α and B has density 1

β . In fact, Beatty’s Theorem states that
A and B are disjoint (try and prove it!).

As an application, write down powers of 10 in two lists, one in base 2 and one in base 5:

12, 10102, 11001002, . . .

15, 205, 4005, . . . .

Conclude that for n ≥ 2 there is an entry with n digits in exactly one of the two lists.

2. (a) Let A be the set of positive integers whose first digit is 1. Fill in the details of the claims
made in class:

(i) The arithmetic density of A does not exist;

(ii) The logarithmic density of A is log10 2
∼= 0.301.

(b) Prove that if dB(A) = δ, then the logarithmic density is also DB(A) = δ.

Hint: Use partial summation.



3. You are encouraged to read the following sources on the Gamma function if you are unfamiliar
with its basic properties.

A thorough introduction is found in this Second-Year Essay (author unknown):

http://warwickmaths.org/files/gamma.pdf

Quick proofs of the reflection and duplication formulas are on Pages 8 – 9 of R. Koekoek’s
notes:

http://aw.twi.tudelft.nl/~koekoek/documents/wi4006/gammabeta.pdf

A concise summary of Weierstrass products is found in Section 1 of M. Nica’s notes:

http://math.nyu.edu/~nica/last_complex.pdf

4. In this problem you will fill in the details for the error terms in Laplace’s method for asymp-
totic expansions applied to the Gamma function. Recall that we used simple changes to
variables to write the integral as

Γ(s+ 1) = ss+1e−s

∫ ∞

0
e−s(u−1)+s log udu.

Denote the integral by I(s) :=

∫ ∞

0
es·g(u)du, where g(u) := −(u− 1) + log(1 + (u− 1)).

(a) For 1 > ε > 0, set I1(s) :=

∫ 1+ε

1−ε
es·g(u)du, so that

I(s)− I1(s) = E−
1 (s) + E+

1 (s) :=

∫ 1−ε

0
+

∫ ∞

1+ε
.

Prove that the error terms are exponentially small compared to I(s), i.e., that E±
1 (s) =

O (e−cs · I(s)) for some constant c.

Hint: For E−
1 , show that g(u) is increasing on (0, 1). For E+

1 , show that g(u) ≤ − ε
2(u−1)

for u ≥ 1 + ε.

(b) Let

I2(s) :=

∫ 1+ε

1−ε
e−s

(u−1)2

2 du, (1)

and use Taylor’s Theorem (with remainder) on ex to show that

I1(s)− I2(s) ≤
∫ 1+ε

1−ε
e−s

(u−1)2

2 · ec(u)s ·
∣∣∣∣g(u)− (u− 1)2

2

∣∣∣∣ du,
where c(u) ∈

[
0, s

∣∣∣g(u)− (u−1)2

2

∣∣∣]. Now apply Taylor’s Theorem to g(u) (around u = 1)

and conclude that ∣∣∣∣g(u)− (u− 1)2

2

∣∣∣∣ ≤ C · (u− 1)3,



for some constant C. Furthermore, for sufficiently small ε, c(u) ≤ s(u−1)2

4 . Use these
bounds to verify that

I1(s)− I2(s) ≪
1

s
.

(c) Finally, set I3(s) :=

∫ ∞

−∞
e−su2

2 du. Show that

I2(s)− I3(s) = 2

∫ ∞

ε
e−

su2

2 du ≪ 1√
s
e

sε2

2

by making the change of variables u 7→ u−ε and then comparing to the Gamma function.

Conclude that I(s) ∼ I3(s).

5. The exponential integral is defined for positive x by

E1(x) :=

∫ ∞

x
e−tdt

t
.

Prove that it has an asymptotic expansion as x → ∞ given by

E1(x) ∼
e−x

x

∑
n≥0

(−1)nn!

xn
.

Remark. In 1963 Sweeney used the above asymptotic expansion along with the identity

E(x) = − log x− γ −
∑
n≥1

(−x)n

n · n!

to calculate several thousand digits of Euler’s constant. This identity is best proven using the
Weierstrass product for Γ(s); see Section 2.3 of http://numbers.computation.free.fr/Constants/Gamma/gamma.pdf.

6. Recall that the error function is given by erf(x) :=
2√
π

∫ x

0
e−t2dt.

(a) We showed that the Taylor expansion is given by

erf(x) =
2√
pi

∑
n≥0

(−1)nx2n+1

(2n+ 1) · n!
.

Although this series converges absolutely for all x, it does so slowly for large x. In
particular, prove that the largest absolute value of the summands occurs when n ≍ x2.

Hint: Apply Stirling’s approximation and then take the derivative with respect to n.

(b) We also showed the asymptotic expansion

erf(x) ∼ 1− e−x2

√
π

∑
n≥0

(−1)n(2n)!

22nn!x2n+1
.

Prove that this diverges for all x ̸= 0.


