LSU Problem Solving Seminar - Fall 2015 Nov. 11: Functions

Prof. Karl Mahlburg Website: www.math.lsu.edu/~mahlburg/teaching/2015-Putnam.html

Warm Up:

- 1. Let $A := \{a, b, c, d, e\}$ and $B := \{1, 2, 3\}$.
 - (a) How many functions are there from A to B?
 - (b) How many functions are there from B to A?
 - (c) How many injective (1-to-1) functions are there from B to A?
 - (d) How many invertible functions are there from A to B?
- 2. The *natural numbers* are $\mathbb{N} := \{1, 2, ... \}$. The integers are $\mathbb{Z} := \{..., -1, 0, 1, 2, ... \}$.
 - (a) Find all invertible functions $f : \mathbb{N} \to \mathbb{N}$ such that f(n) is a multiple of n for all n. Hint: Suppose that f(n) > n for some n, for example, f(10) = 20. What can you say about f(5), f(2), f(1)?
 - (b) Find all invertible functions $f : \mathbb{Z} \to \mathbb{Z}$ such that f(n) is a multiple of n for all n.
- 3. (a) Find all real functions f such that

$$f(x+y) = f(x) + y$$

for all $x, y \in \mathbb{R}$.

(b) Find all continuous real functions f such that

$$f(x+y) = f(x) + f(y)$$

for all $x, y \in \mathbb{R}$.

Remark: The theory of Hamel bases implies that there are other discontinuous solutions!

Main Problems:

4. [VTRMC 1990 # 3] Let f be defined on the natural numbers as follows: f(1) = 1, and for n > 1,

$$f(n) = f(f(n-1)) + f(n - f(n-1)).$$

Find, with proof, a simple explicit formula for f(n) that is valid for all n.

5. (a) Find all continuous real functions f that satisfy the functional equation f(f(x)) = x for all x.

Hint: Observe that f is invertible, and is in fact its own inverse. Use the fact that an invertible continuous function is strictly increasing or decreasing. If f is increasing, is it ever possible that f(x) > x?

(b) Prove that there are no continuous real functions such that f(f(x)) = -x for all x.

Hint: First consider f(f(f(x)))) to show that f is invertible.

- 6. Suppose that $k \ge 1$.
 - (a) Prove that there is a unique continuous function $f : [0,1] \to [0,1]$ such that f(0) = 1, f(1) = 0 and

$$f(x)^k - f(x)^{k+1} = x^k - x^{k+1}$$
 for all $0 \le x \le 1$.

Hint: Note that f(x) = x is a solution to the functional equation, but it does not have the correct boundary values. Show that if $x \in [0, 1]$ and $x^k - x^{k+1} = c$, then there is a second solution $z \in [0, 1]$ satisfying $z^k - z^{k+1} = c$. Setting f(x) = z is the correct choice.

- (b) Denote the function defined above by $f_k(x)$. Show that $f_1(x) = 1 x$, and find a formula for $f_2(x)$.
- (c) Each $f_k(x)$ intersects the line y = x in a unique point; find the value x_k such that $f_k(x_k) = x_k$.
- 7. [Andreescu-Gelca 8] Determine all functions $f : \mathbb{N} \to \mathbb{N}$ satisfying

$$xf(y) + yf(x) = (x+y)f(x^2+y^2).$$

Hint: Suppose that f(y) > f(x). Show that (x+y)f(x) < xf(y) + yf(x) < (x+y)f(y).

- 8. [Putnam **2012 B1**] Let S be the set of functions from $[0, \infty)$ to $[0, \infty)$ with the following properties:
 - (a) The functions $f_1(x) = e^x 1$ and $f_2(x) = \ln(x+1)$ are in S.
 - (b) If f(x) and g(x) are in S, then f(x) + g(x) and f(g(x)) are in S.
 - (c) If f(x) and g(x) are in S and $f(x) \ge g(x)$ for all $x \ge 0$, then f(x) g(x) is in S.

Prove that if f(x) and g(x) are in S, then the function f(x)g(x) is also in S.

9. [Putnam **1991 B2**] Suppose that f and g are real, non-constant, differentiable functions such that f'(0) = 0 and

$$f(x+y) = f(x)f(y) - g(x)g(y),$$

$$g(x+y) = f(x)g(y) + f(y)g(x)$$

for all x, y. Prove that $f(x)^2 + g(x)^2 = 1$ for all x.