Let \(f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0 \) be a polynomial with real coefficients. The degree of such a polynomial is the exponent of the leading term, in this case \(n \). A root of \(f \) is a value \(r \) such that \(f(r) = 0 \).

Useful Facts:

- **Rational Roots Test.** If all of the \(a_i \) are integers and \(r = \frac{p}{q} \) is a root, then \(p \) is a divisor of \(a_0 \) and \(q \) is a divisor of \(a_n \).
- **Fundamental Theorem of Algebra.** A polynomial of degree \(n \) has exactly \(n \) complex roots, counted with multiplicity. In particular, it has at most \(n \) real roots. Furthermore, if the roots are \(r_1, \ldots, r_n \), then \(f(x) = c(x - r_1) \cdots (x - r_n) \) for some constant \(c \).
- **Descartes' Rule of Signs.** If the non-zero coefficients of \(f(x) \) change sign \(s \) times, then \(f \) has at most \(s \) positive roots (with multiplicity). The actual number of positive roots is less than \(s \) by some multiple of 2. Replacing \(x \) by \(-x \) gives a similar test for negative roots.
- **Polynomial Division.** A polynomial \(f(x) \) is a multiple of \(g(x) \) if \(f(x) = h(x) \cdot g(x) \) for some polynomial \(h(x) \). If \(f(x) \) is not a multiple of \(g(x) \), then there are polynomials \(q(x) \) ("quotient") and \(r(x) \) ("remainder") such that \(f(x) = q(x) \cdot g(x) + r(x) \), where \(r(x) \) has lower degree than \(g(x) \).

Warm Up:

1. Factor the following polynomials:
 - (a) \(x^2 + 9x + 9 \);
 - (b) \(6x^3 + x^2 - 5x - 2 \);
 - (c) \(x^3 - \frac{x^2}{2} + 3x - \frac{3}{2} \).

2. Let \(f(x) := x^3 + ax + 1 \), where \(a \) is some real number.
 - (a) Prove that \(f(x) \) always has at least one real root.
 - (b) Prove that if \(a \) is positive, then \(f(x) \) has exactly one real root.

 Optional: Determine the values of \(a \) such that \(f(x) \) has **more** than one real root.

3. Find all polynomials \(f(x) \) that satisfy \(f(x + 1) = f(x) + 2 \) for all \(x \).

Main Problems:

4. (a) Let \(f(x) = x^7 - 2x^6 - 2x^4 + 4x^3 + x \) and \(g(x) = x^2 - 3x + 2 \). Prove that \(f(x) \) is not a multiple of \(g(x) \), but that there is a constant \(c \) such that \(f(x) + c \) is a multiple of \(g(x) \). Find the value of \(c \).
(b) Determine whether or not \(f(x) = x^{2015} - x^{210} - x^{15} + x^5 + x^2 - x \) is a multiple of \(g(x) = x^3 - x \).

Hint: For both parts, do not try to divide \(f(x) \) by \(g(x) \) directly – the quotients are complicated! Instead, use the Fundamental Theorem of Algebra to find the remainders.

5. A root \(r \) of a polynomial \(f(x) \) is a **repeated root** of order \(k \) if \(f(r) = 0, f'(r) = 0, \ldots, f^{(k-1)}(r) = 0 \). Prove that if this is the case, then \(f(x) \) is a multiple of \((x - r)^k \).

6. (a) **Equality Test.** Suppose that \(f(x) \) and \(g(x) \) are known to be polynomials of degree at most \(n \). Prove that if they agree on \(n + 1 \) different values, so that \(f(x_1) = g(x_1), \ldots, f(x_{n+1}) = g(x_{n+1}) \), then the polynomials are identical.

(b) Define a cubic polynomial by
\[
f(x) = \frac{(x - 1)(x - 2)(x - 3)}{(-1) \cdot (-2) \cdot (-3)} + \frac{x(x - 2)(x - 3)}{1 \cdot (-1) \cdot (-2)} + \frac{x(x - 1)(x - 3)}{2 \cdot 1 \cdot (-1)} + \frac{x(x - 1)(x - 2)}{3 \cdot 2 \cdot 1}.
\]
Show (by plugging in) that this polynomial satisfies \(f(0) = f(1) = f(2) = f(3) = 1 \). Then find the coefficients explicitly, determining the constants \(a, b, c, \) and \(d \) such that \(f(x) = ax^3 + bx^2 + cx + d \).

Hint: It is not necessary to do any messy calculations! Note that \(f(x) - 1 \) is a cubic polynomial with 4 different roots. . . .

7. [Gelca-Andreescu 148] Determine all polynomials \(P(x) \) with real coefficients for which there exists a positive integer \(n \) such that for all \(x \),
\[
P \left(x + \frac{1}{n} \right) + P \left(x - \frac{1}{n} \right) = 2P(x).
\]

Hint: What if \(P(x) \) is linear? What if it is quadratic?

8. [Putnam 1971 A2] Determine all polynomials \(f(x) \) that satisfy \(f(0) = 0 \) and \(f(x^2+1) = f(x)^2 + 1 \).