Virginia Tech Regional Math Contest: Saturday, Oct. 24. Location: Coates Hall 103, LSU. You must be present promptly at 8:30 A.M., or you will not be able to enter the building.

LSU Problem Solving Seminar - Fall 2015 Oct. 21: Number Theory

Prof. Karl Mahlburg <u>Website</u>: www.math.lsu.edu/~mahlburg/teaching/2015-Putnam.html

Useful facts:

- The prime factorization of the current year is $2015 = 5 \cdot 13 \cdot 31$, and the previous year was $2014 = 2 \cdot 19 \cdot 53$.
- Fermat's Little Theorem. If p is prime and a is any integer, then $a^p a$ is a multiple of p.
- For any integer n, its square can only have the following remainders:

0 or 1 when divided by 3; 0 or 1 when divided by 4; 0, 1, 4, 5, 6, or 9 when divided by 10.

• Greatest Common Divisors. If a and b are integers with prime factorizations $a = p_1^{\alpha_1} \cdots p_r^{\alpha_r}, b = p_1^{\beta_1} \cdots p_r^{\beta_r}$, their greatest common divisor is

$$\gcd(a,b) = p_1^{\min\{\alpha_1,\beta_1\}} \cdots p_r^{\min\{\alpha_r,\beta_r\}}.$$

The equation ax + by = N has integer solutions if and only if gcd(a, b) divides N.

• Euler's Totient Function. If $n = p_1^{\alpha_1} \cdots p_r^{\alpha_r}$, then define

$$\phi(n) := n \cdot \left(1 - \frac{1}{p_1}\right) \cdots \left(1 - \frac{1}{p_r}\right)$$

Among the integers 1, 2, ..., n, exactly $\phi(n)$ of them satisfy gcd(a, n) = 1. Furthermore, if gcd(a, n) = 1, then $a^{\phi(n)}$ has remainder 1 when divided by n.

• Casting Out Nines. If n is an integer and s is the sum of its decimal digits, then n - s is a multiple of 9.

Warm Up:

- 1. (a) Show that $n^3 n$ is a multiple of 6.
 - (b) Show that $n^7 n$ is a multiple of 42.
- 2. A long hallway contains Rooms numbered by 1, 2, ..., 100, all of which are initially closed. A line of people then walks down the hallway one-by-one. The first person opens every door; the second person then closes every second door; the third person stops at every third door and reverses its status, opening it if it was closed, and closing it if open. This continues until a hundredth person, who reverses the position of the 100-th door. Which doors are open at the end of this process?

Hint: First try the procedure on a smaller number of doors.

- 3. (a) Determine the remainder when 2013^{2015} is divided by 2014.
 - (b) Determine the remainder when 2015^{2013} is divided by 2014.

Main Problems:

- 4. (a) Let n be an integer with remainder 3 when divided by 4, so that n = 4m + 3 for some n. Show that n is divisible by a prime of the form p = 4k + 3.
 - (b) Prove that there are infinitely many primes of the form p = 4k + 3. Hint: If there were finitely many p_1, \ldots, p_r , consider $4p_1 \cdots p_r + 3$.
- 5. If $n \ge 1$, prove that the product $2n \cdot (2n-1) \cdots (n+2) \cdot (n+1)$ is *exactly* divisible by 2^n . This means that

$$2n \cdot (2n-1) \cdots (n+2) \cdot (n+1) = 2^n \cdot m$$

for some odd integer m.

- 6. (a) Prove that $2^9 + 5^9$ is a multiple of 7.
 - (b) Prove that 15¹⁵ + 45⁴⁵ is a multiple of 2015.
 Hint: Use the prime factorization of 2015.
- 7. A polynomial p(x) is *integer-valued* if p(n) is an integer for any integer n. Throughout this problem, let a, b, c be distinct integers.
 - (a) Find an integer-valued polynomial such that p(a) = b and p(b) = a. Characterize all such polynomials.
 - (b) Prove that if p(x) has integral coefficients, then p(b) p(a) is a multiple of b a.
 - (c) Prove that there is no polynomial p(x) with integral coefficients such that p(a) = b, p(b) = c and p(c) = a.
 Remark: However, there can be integer-valued polynomials with this property. For example, p(x) = -³/₂x² + ^{11x}/₂ 2 satisfies p(1) = 2, p(2) = 3, p(3) = 1, and is integer-valued!
- 8. [VTRMC **2009** # 6] Let n be a nonzero integer. Prove that $n^4 7n^2 + 1$ can never be a perfect square.
- 9. (a) Show that there are no integer solutions to $x^2 + 5y^3 = 202$.
 - (b) Show that there are no integer solutions to $x^2 + 4xy + 11y^2 = 80$. Hint: Complete the square.
- 10. [Putnam **1954 A7**] Prove that the equation $m^2 + 3mn 2n^2 = 122$ has no integral solutions.