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This week’s practice sheet provides a detailed look at several of the problems from last weekend’s
2016 Virginia Tech Regional Math Contest. Each contest problem is preceded by a related problem
that illustrates some relevant techniques in a somewhat easier context.

1. Recall the following trigonometric identities and derivatives:

tan2(u) + 1 = sec2(u),

d

du
tan(u) = sec2(u),

d

du
sec(u) = sec(u) tan(u).

(a) Use the substitution x = tan(u) to evaluate the integral

∫ √
3

0

1

x2 + 1
dx.

(b) Calculate the antiderivative

∫
tan(x)dx by first writing tan(x) = sec(x) tan(x)

sec(x) , and then

making the substitution v = sec(x).

(c) Calculate d
dx ln | cos(x)|. Compare your answer to 1(b). Why are the absolute value signs

necessary? For what values of x is this derivative defined?

2. [VTRMC 2016 # 1] Evaluate

∫ 2

1

lnx

2− 2x+ x2
dx.

Hint: The integrand does not have a closed-form antiderivative, so you will need to identify can-

cellations or symmetries. Use a trigonometric substitution, and recall the sine addition formula:

sin(x+ y) = sin(x) cos(y) + cos(x) sin(y).

3. (a) Prove that
∑∞

n=1
1
nk converges if and only if k > 1.

(b) Limit Comparison Test. Suppose that an and bn are non-negative series that are
asymptotically equal, which we write as an ∼ bn as n → ∞. This means precisely that

lim
n→∞

an
bn

= 1. Prove that
∑∞

n=1 an converges if and only if
∑∞

n=1 bn converges.

(c) The Taylor expansion of the exponential function is

ex = 1 + x+
x2

2!
+

x3

3!
+ · · · .

Plug in n and compare appropriate terms to conclude that n! >
(n
e

)n
. In fact, Stirling’s

approximation states that for large n, n! ∼
√
2πn

(n
e

)n
.

4. [VTRMC 2016 # 2] Determine the real numbers k such that
∞∑
n=1

(
(2n)!

4nn!n!

)k

is convergent.

5. Fermat’s Little Theorem states that if a is not a multiple of p, then ap−1 ≡ 1 (mod p) (which
means that ap−1 − 1 is a multiple of p).



(a) Suppose that p is an odd prime and a2+1 is a multiple of p, so a2 ≡ −1 (mod p). Then

ap−1 =
(
a2
) p−1

2 ≡ (−1)
p−1
2 (mod p).

Now show that if p is a prime of the form p = 4k + 3, then 1 ≡ −1 (mod p), which is
impossible. Thus for these primes there are no such a.

Remark: It is a deeper fact that if p = 4k + 1, then there is always an a such that a2 ≡ −1

(mod p).

(b) Show that if a2 + 1 is a multiple of p, then (a− p)2 + 1 is also a multiple of p.

(c) Conclude that if a2+1 is a multiple of p, then there is some value a′ such that the largest
prime factor of a′2 + 1 is p.

Hint: Find an a′ such that a′ < p and a′2 + 1 is a multiple of p.

6. [VTRMC 2016 # 4] For a positive integer a, let P (a) denote the largest prime divisor of
a2 +1. Prove that there exist infinitely many triples (a, b, c) of distinct positive integers such
that P (a) = P (b) = P (c).

7. Let α := 1+
√
2, and for n ≥ 1, define integers rn and sn by expanding αn = rn + sn

√
2. For

example, r1 = 1, s1 = 1; since α2 = 3 + 2
√
2, the next values are r2 = 3 and s2 = 2.

(a) Calculate the next several values of rn, sn.

(b) Let α := 1−
√
2 (this is known as the conjugate of α). Show that αn = rn − sn

√
2.

(c) Use α to show that r2n − 2s2n = (−1)n for all n.

(d) By definition, α2n = r2n + s2n
√
2. However, it is also true that

α2n = αn · αn =
(
rn + sn

√
2
)2

.

Use this to obtain an expression for r2n in terms of rn and sn.

(e) Combine the previous two parts and conclude that r2n−(−1)n is always a perfect square!

8. [VTRMC 2016 # 5] Suppose that m,n, r are positive integers such that

1 +m+ n
√
3 = (2 +

√
3)2r−1.

Prove that m is a perfect square.

Remark: For any non-square integer N , there is a corresponding Pell’s equation x2−Ny2 = 1. It is a

fact from Number Theory that all solutions arise as powers of a fundamental solution (r + s
√
N)(r −

s
√
N) = 1.

9. Recall the Binomial Theorem, which states that for n ≥ 0, (1 + x)n =

n∑
k=0

(
n

k

)
xk. Here the

binomial coefficients are given by(
n

k

)
=

n!

k!(n− k)!
=

n(n− 1)(n− 2) · · · (n− k + 1)

1 · 2 · 3 · · · k
.



In this problem you will explore several proofs of Vandermonde’s summation formula(
m+ n

k

)
=

k∑
j=0

(
m

j

)(
n

k − j

)
,

which holds for all non-negative integers m,n, and k.

(a) Series. Note that (1+ x)m+n = (1+ x)m(1+ x)n. Apply the Binomial Theorem to each
product, and find the coefficient of xk.

(b) Combinatorial. Suppose that a committee of k people is to be chosen from a group of m
women and n men. One procedure would be to have all m+ n people in the same room
and vote for the k representatives. A second procedure would be to first decide how many
women the committee will have; call this number j. Then the women meet separately
to choose j representatives, and the men choose k − j. Compare the expressions that
arise from these two procedures to obtain the identity.

(c) Calculus. The iterated product rule states that

dk

dxk
(
f(x) · g(x)

)
=

k∑
j=0

(
k

j

)(
dj

dxj
f(x)

)
·
(

dk−j

dxk−j
g(x)

)
.

Apply
dk

dxk
to both sides of (1 + x)m+n = (1 + x)m(1 + x)n and set x = 0.

(d) Show that

(
2n

n

)
=

(
n

0

)2

+

(
n

1

)2

+ · · ·+
(
n

n

)2

.

(e) What is the constant coefficient (i.e., x0) of (2 + x+ x−1)n?

Hint: (1 + x)(1 + x−1) =?

10. [VTRMC 2016 # 7] Let q be a real number with |q| ̸= 1 and let k be a positive integer.
Define a Laurent polynomial fk(X) in the variable X, depending on q and k, by fk(X) =
k−1∏
i=0

(
1− qiX

) (
1− qi+1X−1

)
. Show that the constant term of fk(X), i.e. the coefficient of

X0 in fk(X), is equal to (
1− qk+1

) (
1− qk+2

)
· · ·

(
1− q2k

)
(1− q)(1− q2) · · · (1− qk)

.


