LSU Problem Solving Seminar - Fall 2016 Nov. 2: Sequences and Series

Prof. Karl Mahlburg Website: www.math.lsu.edu/~mahlburg/teaching/2016-Putnam.html

• Geometric Series. If |x| < 1, then

$$1 + x + x^2 + x^3 + \dots = \frac{1}{1 - x}.$$

- Ratio Test. Let $L := \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$. If L < 1, then $\sum_{n \ge 1} a_n$ converges, and if L > 1, then the sum diverges. If L = 1, the test is inconclusive.
- Monotone Convergence. If $a_1 \leq a_2 \leq \ldots$ and all $a_n \leq B$ for some constant B, then $\lim_{n \to \infty} a_n$ exists.
- Alternating Series. If $a_1 \ge a_2 \ge \ldots$ and $\lim_{n \to \infty} a_n = 0$, then $a_1 a_2 + a_3 \ldots$ converges.
- Linear Recurrences. The characteristic polynomial associated to a (homogeneous) recurrence $a_{n+k} = c_{k-1}a_{n+k-1} + \cdots + c_1a_{n+1} + c_0a_n$ is $p(x) := x^k c_{k-1}x^{k-1} \cdots c_1x c_0$. If p(x) has distinct roots $\lambda_1, \ldots, \lambda_k$, then the general solution to the recurrence is

$$a_n = b_1 \lambda_1^n + \dots + b_k \lambda_k^n,$$

where the constants are determined by k initial values. If there is a **repeated** root λ of order m, then the general solution has the term $(d_{k-1}n^{k-1} + \cdots + d_1n + d_0)\lambda^n$.

Warm Up

1. Evaluate the following series:

(a)	$1 - \frac{1}{2} + \frac{1}{4} - \frac{1}{8} + \dots = ?$
(b)	$\frac{1}{2} + \frac{1}{8} + \frac{1}{32} + \dots = ?$
(c)	$\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \frac{1}{3\cdot 4} + \dots = ?$
	<i>Hint: Apply partial fractions and write</i> $\frac{1}{n(n+1)} = \frac{a}{n} + \frac{b}{n+1}$ <i>for constants a and b.</i>

- 2. Solve the following recurrences; this means finding a closed-form expression for a_n .
 - (a) $a_1 = 1$ and $a_{n+1} = a_n + 2n + 1$ for $n \ge 1$.
 - (b) $a_1 = 1, a_2 = 5$, and $a_{n+2} = a_{n+1} + 2a_n$ for $n \ge 1$.

Main Problems

3. Let $b_1 = 1, c_1 = 1$, and for $n \ge 1$ define two sequences by

$$b_{n+1} := b_n + 2c_n, \qquad c_{n+1} := b_n + c_n.$$

- (a) Determine the limiting value of their ratio, $\lim_{n \to \infty} \frac{b_n}{c_n}$. Hint: Let $a_n := \frac{b_n}{c_n}$, and find a relationship between a_{n+1} and a_n .
- (b) How is the limit affected by a different starting value? What if $\frac{b_1}{c_1}$ is an arbitrary positive fraction?
- 4. Evaluate the series $\frac{1}{2} \frac{1}{6} + \frac{1}{12} \frac{1}{20} + \cdots$.

Hint: Recall the Taylor series of the natural logarithm, $\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots$.

5. A sequence is defined by $a_1 = 0, a_2 = 2$, and $a_{n+2} = 2a_{n+1} - a_n + 2n + 2$ for $n \ge 1$. *Hint:* Let $b_n := a_n - a_{n-1}$, and find a recurrence for b_n ; this should result in a simpler "polynomial part" than 2n + 2. Then similarly set $c_n := b_n - b_{n-1}$.

6. The *Fibonacci numbers* are defined by $F_1 = 1, F_2 = 1$, and

$$F_{n+2} = F_{n+1} + F_n$$
, for $n \ge 1$.

(a) Prove that for $n \ge 1$,

$$F_n^2 + F_{n+1}^2 = F_{2n+1}^2$$

(b) Determine the limiting value of the ratio of successive Fibonacci numbers,

$$\lim_{n \to \infty} \frac{F_{n+1}}{F_n} = ?$$

Hint: Let $u_n := \frac{F_{n+1}}{F_n}$, and find a relationship between u_{n+1} and u_n .

7. (a) Prove that for all $n \ge 1$,

$$1^{3} + 2^{3} + \dots + n^{3} = (1 + 2 + \dots + n)^{2}.$$

(b) Suppose that a_1, a_2, \ldots are positive real numbers such that for all $n \ge 1$,

$$a_1^3 + a_2^3 + \dots + a_n^3 = (a_1 + a_2 + \dots + a_n)^2.$$

Is the only solution the one given above? In other words, must it be true that $a_i = i$ for all i?

8. [VTRMC 1992 # 4] Let $\{t_n\}_{n=1}^{\infty}$ be a sequence of positive numbers such that $t_1 = 1$ and $t_{n+1} := \sqrt{1+t_n}$ for $n \ge 1$. Show that t_n is increasing in n and find $\lim_{n \to \infty} t_n$.

Remark: The limit of this sequence is sometimes written in the more striking form $\sqrt{1 + \sqrt{1 + \sqrt{1 + \cdots}}}$.

9. [Putnam **1973 A2**] Suppose that $a_n = \pm \frac{1}{n}$ for all n > 0, and $a_{n+8} > 0$ if and only if $a_n > 0$. Show that if exactly four of a_1, a_2, \ldots, a_8 are positive, then $\sum_{n=1}^{\infty} a_n$ converges. Is the converse true?