Important upcoming dates:

- The Problem-Solving Seminar will **not** meet on Wednesday, Nov. 22 due to the Thanksgiving holiday. The last meeting of the semester will be Wednesday, Nov. 29.
- Putnam Mathematical Competition, Sat., Dec. 2. The Exam will take place in Lockett 244 from 8:30 A.M. 5:00 P.M.

LSU Problem Solving Seminar - Fall 2017 Nov. 15: Polynomials

Prof. Karl Mahlburg

<u>Website</u>: www.math.lsu.edu/ \sim mahlburg/teaching/Putnam.html

Let $f(x) = a_n x^n + a_{n-1} x^{n-1} \cdots + a_1 x + a_0$ be a polynomial with real coefficients. It is *monic* if the leading coefficient $a_n = 1$. The *degree* of a polynomial is the exponent of the leading term, in this case n. A root of f is a value r such that f(r) = 0.

- Rational Roots Test. If all of the a_i are integers and $r = \frac{p}{q}$ is a root, then p is a divisor of a_0 and q is a divisor of a_n .
- Descartes' Rule of Signs. If the non-zero coefficients of f(x) change sign s times, then f has at most s positive roots (with multiplicity). The actual number of positive roots is less than s by some multiple of 2. Replacing x by -x gives a similar test for negative roots.
- Polynomial Division Algorithm. A polynomial f(x) is a multiple of g(x) if $f(x) = h(x) \cdot g(x)$ for some polynomial h(x). If f(x) is not a multiple of g(x), then there are polynomials q(x) ("quotient") and r(x) ("remainder") such that $f(x) = q(x) \cdot g(x) + r(x)$, where r(x) has lower degree than g(x).
- Fundamental Theorem of Algebra. A polynomial of degree n has exactly n complex roots, counted with multiplicity. In particular, it has at most n real roots. Furthermore, if the roots are r_1, \ldots, r_n , then $f(x) = c(x r_1) \cdots (x r_n)$ for some constant c.
- Sum and Product of Roots. If a monic polynomial $f(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0$ has roots (with repetition) r_1, \ldots, r_n , then

$$a_{n-1} = -(r_1 + \dots + r_n);$$
 $a_0 = (-1)^n r_1 \cdots r_n.$

- Repeated Roots. A polynomial f(x) is divisible by $(x-r)^k$ (i.e. the root r has multiplicity at least k) if and only if $f(r) = 0, f'(r) = 0, \ldots, f^{(k-1)}(r) = 0$.
- Roots of Unity. The roots of $x^n 1$ are $1, e^{\frac{2\pi i}{n}}, e^{\frac{2\pi i}{n}}, \ldots, e^{\frac{(n-1)\cdot 2\pi i}{n}}$. These can also be written as $1, \zeta_n, \zeta_n^2, \ldots, \zeta_n^{n-1}$, where $\zeta_n := e^{\frac{2\pi i}{n}}$. The previous property implies that

$$1 + \zeta_n + \zeta_n^2 + \dots + \zeta_n^{n-1} = 0.$$

• Euler's Formula. For real x, $e^{ix} = \cos(x) + i\sin(x)$.

Warm Up

1. Find the *rational factorization* of the following polynomials (this means all factors have rational coefficients):

- (a) x³ − x² − x + 4;
 (b) 2x⁴ − ¹³/₂x² + ⁹/₂. Hint: Try plugging in some simple values of x.
- 2. Show that there is a **unique** polynomial of the form $p(x) = x^2 + ax + b$ whose roots are also a and b; what are the values of a and b?
- 3. (a) The polynomial $x^4 + 2x^3 13x^2 14x + 24$ has roots 1, 3, and -4. Without doing any polynomial division, find the fourth root.
 - (b) Given that $f(x) = x^4 + 4x + 3$ has two roots r_1, r_2 such that $r_1 + r_2 = 2$, find the rational factorization of f.
- 4. Find a polynomial with **integer** coefficients and roots $-\frac{1}{2}, \frac{2}{3}$, and 2.

Main Problems

- 5. Find the rational factorization of $x^4 + x^2 + 1$.
- 6. Exactly **one** of the following polynomials is a multiple of $x^3 + 1$; determine which one:

 $x^{2017} + x^{1018} + x^{19} + x^{10} + 1$ or $x^{2017} + x^{1018} + x^{19} + x^{10} + x^{9} + 1$?

Hint: What happens if you plug in x = -1?

- 7. Find the largest n such that $n^3 + 121$ is a multiple of n + 11. Hint: Write $n^3 + 121 = (n^3 + 1331) - 1210$ and use the division algorithm.
- 8. (a) Find b and c such that $x^2 + b$ and $x^3 + c$ are both multiples of the polynomial x 2.
 - (b) Show that for all $n \ge 1$ there is a unique integer a_n such that $x^n + a_n$ is a multiple of x 2.

Hint: There are at least two ways of approaching this problem: 1. Construct $a_n(x)$ inductively; 2. Use the polynomial division algorithm and consider the value at x = 2.

- 9. [Gelca-Andreescu 304] Let $p(x) = x^2 3x + 2$. Show that for any positive integer *n* there exist unique numbers a_n and b_n such that the polynomial $q_n(x) = x^n a_n x b_n$ is divisible by p(x).
- 10. [VTRMC 1985 # 8] Let $p(x) = a_0 + a_1 x + \dots + a_n x^n$, where the coefficients a_i are real. Prove that p(x) has at least one root in the interval $0 \le x \le 1$ if $a_0 + a_1/2 + \dots + a_n/(n+1) = 0$.
- 11. [Putnam 1985 B1] Let k be the smallest positive integer with the following property:

There are distinct integers m_1, m_2, m_3, m_4, m_5 such that the polynomial

$$p(x) = (x - m_1)(x - m_2)(x - m_3)(x - m_4)(x - m_5)$$

has exactly k nonzero coefficients.

Find, with proof, a set of integers m_1, m_2, m_3, m_4, m_5 for which this minimum k is achieved.

- 12. Let $f(x) := (x + 1/x)^4 (x^4 + 1/x^4)$, where x > 0.
 - (a) What is the limiting behavior of f(x) as $x \to \infty$? As $x \to 0$?
 - (b) Find the minimum value of f(x). At which x is this value achieved?
- 13. [Putnam **1998 B1**] Find the minimum value of

$$\frac{(x+1/x)^6-(x^6+1/x^6)-2}{(x+1/x)^3+(x^3+1/x^3)}$$

for x > 0.