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Test-taking tips:

• Format. The Exam is given in two 3-hour sessions of 6 problems each, with a lunch break from 12:00
– 2:00 P.M. The morning session’s problems are labeled A1 – A6, and the afternoon’s B1 – B6.

• Grading. Each problem is graded out of 10 points, for a maximum possible score of 120. Typically
there is very little partial credit given, and a submitted problem will receive 0, 1, 2, 9, or 10 points.

• A1/A2/B1. In recent years these three problems have been the “easiest” part of the exam. More
generally, the problems in each session are roughly ordered by difficulty. This is not an absolute rule,
but you should expect that A1 will have a relatively short solution, whereas A6 will not. You should
plan on spending at least 15 minutes each trying to make any progress on A1, A2, B1 before moving
on to the rest of the Exam.

• 1 hour per write-up. In order to get full credit, your solutions must be written very carefully. If
you use a result from a course, refer to it by name (e.g. Fundamental Theorem of Calculus). After you
solve a problem, you should plan on spending approximately one hour writing your solution. In light
of the grading described above, it is better to solve one problem completely than several problems
partially.

Main Problems

This week’s practice sheet provides a detailed look at several problems from previous Putnam
Exams. Each Exam problem is preceded by a related problem that illustrates some relevant
concepts in a simpler context.

1. An integer lattice path from the origin to (m,n) is a sequence of alternating horizontal and
vertical line segments (always moving in positive coordinate directions) such that H1 begins
at (0, 0) and ends at some integer point (a1, 0), V1 begins at (a1, 0) and ends at some integer
point (a1, b1), and so on, until ending at (m,n).

(a) How many distinct integer lattice paths are there that end at (10, 10)?

(b) What proportion of these integer lattice paths pass through the point (5, 5) along the
way?

2. [Putnam 2011 A1] Define a growing spiral in the plane to be a sequence of points with integer
coordinates P0 = (0, 0), P1, . . . , Pn such that n ≥ 2 and:

• the directed line segments P0P1, P1P2, . . . , Pn−1Pn are in the successive coordinate di-
rections east (for P0P1), north, west, south, east, etc;

• the lengths of these line segments are positive and strictly increasing.



How many of the points (x, y) with integer coordinates 0 ≤ x ≤ 2011, 0 ≤ y ≤ 2011 cannot
be the last point Pn of any growing spiral?

3. Recall that the factorial of a positive integer n is n! := 1 · 2 · · ·n.

(a) Prove that for all positive integers m,n, the quotient
(m+ n)!

m!n!
is also an integer.

(b) Prove that if m+ n = p is prime, then the quotient
(m+ n)!

m!n!
is a multiple of p.

4. [Putnam 2009 B1] Show that every positive rational number can be written as a quotient of
products of factorials of (not necessarily distinct) primes. For example,

10

9
=

2! · 5!
3! · 3! · 3!

.

5. An abelian group (G, ·) consists of a set of elements G and a binary operation · on G that
satisfy the following axioms:

• Commutativity. For all a, b ∈ G, a · b = b · a.
• Associativity. For all a, b, c ∈ G, (a · b) · c = a · (b · c).
• Identity. There is an element e ∈ G such that a · e = a for all a ∈ G.

• Inverses. For each a ∈ G, there is an element a−1 ∈ G such that a · a−1 = e.

(a) Prove that the identity element is unique; i.e., that if there is another element e′ such
that a · e′ = a for all a ∈ G, then e = e′.

(b) Prove that inverses are unique; i.e., that if a ∈ G is given and b also satisfies a · b = e,
then b = a−1.

6. [Putnam 2012 A2] Let ∗ be a commutative and associative binary operation on a set S.
Assume that for every x and y in S, there exists z in S such that x ∗ z = y. (This z may
depend on x and y). Show that if a, b, c are in S and a ∗ c = b ∗ c, then a = b.

7. Suppose that a closed box contains 1 ball of Color 1, 2 balls of Color 2, and so on, up to
10 balls of Color 10. What is the minimum number of balls that you must take in order to
ensure that you have all of the balls of some color?

8. [Putnam 2010 B3] There are 2010 boxes labeled B1, B2, . . . , B2010, and 2010n balls have
been distributed among them, for some positive integer n. You may redistribute the balls by
a sequence of moves, each of which consists of choosing an i and moving exactly i balls from
box Bi into any one other box. For which values of n is it possible to reach the distribution
with exactly n balls in each box, regardless of the initial distribution of balls?

9. Prove that if n is a positive integer whose last digit is 1, 3, 7, or 9, then there is some integer
m such that n ·m contains only the digit 7; i.e., n ·m = 7777 · · · 7. For example, if n = 21,
then m = 37 works, as 21 · 37 = 777.

10. [Putnam 2007 A4] A repunit is a positive integer whose digits in base 10 are all ones. Find
all polynomials f with real coefficients such that if n is a repunit, then so is f(n).


