LSU Problem Solving Seminar - Fall 2017 Oct. 4: Geometry and Trigonometry

Prof. Karl Mahlburg

 $\underline{Website}$: www.math.lsu.edu/ \sim mahlburg/teaching/Putnam.html

Useful facts:

- Triangle Inequality. If a, b, c are the side lengths of a triangle, then a < b + c.
- Pythagorean Theorem. Suppose that ABC is a right triangle, with $\angle ABC = 90^{\circ}$. If the (opposing) side lengths are $|\overline{AB}| = c$, $|\overline{AC}| = b$, $|\overline{BC}| = a$, then $b^2 = a^2 + c^2$.
- Law of Cosines. If a triangle has sides of lengths a, b, and c, and α is the angle opposite the side of length a, then

$$a^2 = b^2 + c^2 - 2bc\cos(\alpha).$$

• Law of Sines. If β is the angle opposite b, and γ is the angle opposite c, then

$$\frac{\sin(\alpha)}{a} = \frac{\sin(\beta)}{b} = \frac{\sin(\gamma)}{c} = \frac{1}{2R}$$

where R is the radius of the circumscribed circle (which contains the vertices of the triangle).

• Pythagorean Formula. For all x,

$$\sin^2(x) + \cos^2(x) = 1,$$

• Addition Formulas. For all x and y,

$$\cos(x+y) = \cos(x)\cos(y) - \sin(x)\sin(y),$$

$$\sin(x+y) = \sin(x)\cos(y) + \sin(y)\cos(x).$$

- Heron's Formula. If a triangle has side lengths a, b, and c, then its area is $A = \sqrt{s(s-a)(s-b)(s-c)}$, where $s := \frac{a+b+c}{2}$ is the *semiperimeter*.
- **Prisms.** The volume of a prism of height h and base area A is $V = \frac{hA}{3}$.
- Pick's Theorem. Suppose that a polygon with integer vertices contains n integer points in its interior, and m integer points along its edges (including vertices). Then the area is $A = n + \frac{m}{2} 1$.

Warm Up

1. (a) Find the area of the region

$$\left\{ (x,y) \in \mathbb{R}^2 \mid 0 \le y \le x \le 1 \right\}.$$

(b) Find the area of the region

$$\left\{(x,y)\in\mathbb{R}^2\ |\ 1\leq x\leq 2,\ 0\leq y\leq x\right\}.$$

Try to find these areas geometrically, not with integrals!

- 2. (a) Suppose that ABC is a triangle with area 10 and perimeter 15. Construct a new figure by filling in all points that are within distance 1 of ABC. What is the area of this new figure?
 - (b) How would your answer change if ABCD were a convex quadrilateral with area 10 and perimeter 20?
- 3. (a) What is the area of the triangle with vertices (0,0), (3,0), (0,4)?
 - (b) What is the area of the triangle with vertices (0,0), (3,0), and (10,4)?
 - (c) What is the area of the triangle with vertices (0,0), (4,1), and (2,5)? *Hint: Try to solve this by drawing a rectangle around the triangle (this is also a special case of Pick's Theorem)...*

Main Problems

4. (a) Calculate the area of the following region:

(b) Calculate the area **between** the two polygonal borders:

- (c) Is it possible to draw an equilateral triangle in the plane such that all three vertices have integer coordinates?*Hint: What would Pick's Theorem imply if you had such a triangle?*
- 5. (a) Calculate the volume of the region

$$\{(x, y, z) \in \mathbb{R}^3 \mid 0 \le z \le y \le x \le 1\}.$$

(b) Calculate the volume of the region

$$\{(x, y, z) \in \mathbb{R}^3 \mid 0 \le x \le 2, \ 0 \le z \le y \le x\}.$$

- 6. A *median* in a triangle connects a vertex to the midpoint of the opposing edge. The *centroid* of a triangle is the point at which the three medians meet.
 - (a) In a triangle ABC, denote the edge vectors by $\vec{u} := \overline{AB}$ and $\vec{v} := \overline{AC}$. Suppose that A is the origin, so that \vec{u} and \vec{v} correspond to the points B and C, respectively. Let O be the centroid of ABC. A common mistake is to believe that $O = \frac{\vec{u}}{2} + \frac{\vec{v}}{2}$. Show that in fact $\frac{\vec{u}}{2} + \frac{\vec{v}}{2}$ is the median of the edge \overline{BC} .
 - (b) Find the correct formula that expresses O in terms of \vec{u} and \vec{v} .
 - (c) [Gelca-Andreescu **590**] Let *M* be a point in the plane of triangle *ABC*. Prove that the centroids of the triangles *MAB*, *MAC*, and *MCB* form a triangle similar to *ABC*.
- 7. A triangle ABC has (opposing) side lengths a, b, and c. The *circumcircle* is the unique circle containing the points A, B, and C.

Prove that the radius r of the circumcircle satisfies

$$r = \frac{abc}{4 \cdot \operatorname{Area}(ABC)}$$

Remark: As an additional exercise, explain why the circumcircle is unique.

- 8. Suppose that ABC is a triangle with opposing side lengths a, b, and c (i.e. $|\overline{AB}| = c$).
 - (a) Show that if $\angle ABC$ is **obtuse** (i.e., greater than 90°), then $b^2 > a^2 + c^2$.
 - (b) What can you conclude about $\angle ABC$ if $b^2 < a^2 + c^2$?
- 9. [Putnam **2012** A1] Let d_1, d_2, \ldots, d_{12} be real numbers in the open interval (1, 12). Show that there exist distinct indices i, j, k such that d_i, d_j, d_k are the side lengths of an acute triangle.
- 10. Suppose that a region R in the plane has area A. For m > 0, let mR denote R "rescaled" by a factor of m; in other words,

$$mR := \{(mx, my) \mid (x, y) \in R\}.$$

What is the area of mR?

11. [Putnam **1994 A2**] Let A be the area of the region in the first quadrant bounded by the line $y = \frac{1}{2}x$, the x-axis, and the ellipse $\frac{1}{9}x^2 + y^2 = 1$. Find the positive number m such that A is equal to the area of the region in the first quadrant bounded by the line y = mx, the y-axis, and the ellipse $\frac{1}{9}x^2 + y^2 = 1$.