LSU Problem Solving Seminar - Fall 2017 Oct. 11: Sequences and Series

Prof. Karl Mahlburg

 $\underline{Website}$: www.math.lsu.edu/ \sim mahlburg/teaching/Putnam.html

Useful facts:

- Limit of a Sequence. A sequence $\{a_n\}_{n=1}^{\infty}$ converges to a limit ℓ if for any $\varepsilon > 0$ there is an N such that $|a_n \ell| < \varepsilon$ for all n > N.
- Geometric Series. If |x| < 1, then

$$1 + x + x^2 + x^3 + \dots = \frac{1}{1 - x}$$

- Ratio Test. Let $L := \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$. If L < 1, then $\sum_{n \ge 1} a_n$ converges, and if L > 1, then the sum diverges. If L = 1, the test is inconclusive.
- Monotone Convergence. If $a_1 \leq a_2 \leq \ldots$ and all $a_n \leq B$ for some constant B, then $\lim_{n \to \infty} a_n$ exists.
- Alternating Series. If $a_1 \ge a_2 \ge \ldots$ and $\lim_{n \to \infty} a_n = 0$, then $a_1 a_2 + a_3 \ldots$ converges.
- Integral Comparison. If f(x) is a decreasing function for $x \ge 0$, then $\sum_{n\ge 1} f(n) \le \int_0^\infty f(x) dx$.
- Linear Recurrences. The characteristic polynomial associated to a (homogeneous) recurrence $a_{n+k} = c_{k-1}a_{n+k-1} + \cdots + c_1a_{n+1} + c_0a_n$ is $p(x) := x^k c_{k-1}x^{k-1} \cdots c_1x c_0$. If p(x) has distinct roots $\lambda_1, \ldots, \lambda_k$, then the general solution to the recurrence is

$$a_n = b_1 \lambda_1^n + \dots + b_k \lambda_k^n,$$

where the constants are determined by k initial values. If there is a **repeated** root λ of order m, then the general solution has the term $(d_{k-1}n^{k-1} + \cdots + d_1n + d_0)\lambda^n$.

Warm Up

1. Evaluate the following sums:

(a)
$$\frac{1}{3} - \frac{1}{9} + \frac{1}{27} - \frac{1}{81} + \cdots$$

(b) $\frac{1}{2} + \frac{1}{6} + \frac{1}{12} + \frac{1}{20} + \cdots$

2. (a) For any integer $n \ge 2$, evaluate the sum

$$\frac{1}{2!} + \frac{2}{3!} + \dots + \frac{n-2}{(n-1)!} + \frac{n-1}{n!}.$$

What happens as $n \to \infty$?

Hint: Calculate the first few cases and look for a pattern.

(b) Evaluate the sum

$$1 + \frac{2}{1!} + \frac{3}{2!} + \frac{4}{3!} + \frac{5}{4!} + \cdots$$

3. Consider the set of integers whose only prime factors are 2 or 5. Evaluate the sum of their reciprocals:

$$\frac{1}{1} + \frac{1}{2} + \frac{1}{4} + \frac{1}{5} + \frac{1}{8} + \frac{1}{10} + \frac{1}{16} + \frac{1}{20} + \frac{1}{25} + \cdots$$

- 4. At the unfriendliest bar in town, no two people will ever sit on adjacent stools.
 - (a) If there are 4 stools, write down all possible seating arrangements (including the case with no people). For example, it is permissible to have seats 1 and 4 occupied, but it is not allowed to have 1, 3, and 4.
 - (b) Business is booming, so the seating is expanded to 6 stools. How many possible seating arrangements are there?
 - (c) Now suppose that there are n stools, where n is a nonnegative integer, and let b_n be the number of possible seating arrangements. Show that for $n \ge 2$ these numbers satisfy the recurrence

$$b_n = b_{n-1} + b_{n-2}.$$

5. The *Riemann zeta function* is defined for s > 1 by

$$\zeta(s) := 1 + \frac{1}{2^s} + \frac{1}{3^s} + \frac{1}{4^s} + \frac{1}{5^s} + \dots = \sum_{n \ge 1} \frac{1}{n^s}.$$

(a) If you try to plug in s = 1, the resulting expression is known as the *Harmonic* series. Prove that this diverges, i.e., that

$$\zeta(1) = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \dots \to \infty.$$

(b) Prove that for s > 1, there is a simple bound $\zeta(s) < 1 + \frac{1}{s-1}$.

(c) Evaluate the sum

$$\sum_{k=2}^{\infty} \left(\zeta(k) - 1 \right).$$

The answer is **extremely** simple.

- 6. (a) Prove that $\lim_{x \to \infty} x \sin\left(\frac{1}{x}\right) = 1.$
 - (b) Prove that there are infinitely many integers n such that $\sin(n) > \frac{1}{2}$.
- 7. [Gelca-Andreescu **357**] Does the series $\sum_{n=1}^{\infty} \sin\left(\pi\sqrt{n^2+1}\right)$ converge?
- 8. [VTRMC 1990 #5] Determine all real values of p for which the following series converge.

(a)
$$\sum_{n \ge 1} \left(\sin\left(\frac{1}{n}\right) \right)^p$$
, (b) $\sum_{n \ge 1} |\sin(n)|^p$.

9. [Putnam **2013 B1**] For positive integers n, let the number c(n) be determined by the rules c(1) = 1, c(2n) = c(n), and $c(2n + 1) = (-1)^n c(n)$. Find the value of

$$\sum_{n=1}^{2013} c(n)c(n+2).$$

10. [Putnam **1985 A3**] Let d be a real number. For each integer $m \ge 0$, define a sequence $\{a_m(j)\}, j = 0, 1, 2, \dots$ by the condition

$$a_m(0) = \frac{d}{2^m},$$

 $a_m(j+1) = (a_m(j))^2 + 2a_m(j), \qquad j \ge 0.$

Evaluate $\lim_{n \to \infty} a_n(n)$.