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Useful facts:

e Partial Fractions. If f(z) is a polynomial whose degree is less than n, then there are constants
ai,...,ay, such that
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(Here the roots r; must be distinct — there is a more complicated version for repeated roots.)

¢ Fundamental Theorem(s) of Calculus. Suppose that f(z) is a continuous function.
b
— If F(x) is an antiderivative of f, then / f(z)dx = F(b) — F(a).
x a
— Define g(z) := / f(®)dt. Then ¢'(z) = f(x).
a

e Integration By Parts. Suppose that f and g are differentiable. Then
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e Substitution.

b u(b)
[ s @i = [ s
r=a u=u(a)

e Symmetries and Substitution. Remember, integration problems on Mathematics Contests
are meant to have solutions! A complicated integral often has a hidden symmetry or substitution
a

that makes it much easier to evaluate. For example, if f(z) is an odd function, then [ f(z) dz =

—a
0.

Warm Up

1. Calculate the following antiderivatives (indefinite integrals):
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(b) /$2€x3 dx
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Hint: Try the substitution r = tanu.
2. Evaluate the following integrals with as little computation as possible:

@Aa@Fﬂm.

Hint: Complete the square and think geometrically.
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3. Find a function f such that

1 1
/ flx)dx =1 and / :C2f(x)dg: =1.
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Main Problems

4. Evaluate the following integral — the answer is very simple!
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Hint: Write the integrand in the form f(x) + f~1(x), and then draw a picture. . ..

5. The dilogarithm function is defined by

z

logy(2) := —/bg(l_x)dx.

x
0
(a) Prove that the Taylor expansion (around 0) is
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Remark: The name dilogarithm is motivated by the squares in the denominator. The value
2
s

at z =1 is famously logy(1) = ((2) = %

(b) Find a change of variables to show the following alternative integral representation

at z=1:
T T e —logy(1
| e = o).
6. When integrating rational functions, the logarithmic derivative formula is often helpful:
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(a) Find the antiderivative
(z+1)?
~———dx.
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(b) [Gelca-Andreescu 445] Compute

/x+sinx—cosa:—1
x.

T +e¥+sinx

7. (a) Suppose that f(x) is a function such that f(z) # —f(—=) at any point in [—a, al.

Evaluate the integral @
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Hint: Write I 4+ I, and in the second term make the substitution xr = —u.

(b) Evaluate

/ V1i+z d
x.
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Hint: Try to rewrite the integral so that it matches the general form from (a).

8. [VIRMC 2012 #1| Evaluate

[VE]

/ cos? & + sin z cos® z + sin? z cos? x + sin® z cos

dx.

sin®z + cost z + 2sinx cos3 z + 2sin? z cos? x + 2sin> z cos
0

9. For r > 0, define the integral

™

2
I, ::/ 2" sinx dx.
0

(a) Use integration by parts (twice!) to show that

I 1 r+1 1 I
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(b) Conclude that

Ir = rj—l <5)T+1 B (r+1)(7“j—2)(7“+3) <§>T+3+“'
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Is this a meaningful expression; i.e., does it converge?

(c) Finally, prove that the first term is dominant for large r. In particular, that
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10. [Putnam 2011 A3] Find a real number ¢ and a positive number L for which
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11. [Putnam 1995 A2| For what pairs (a,b) of positive real numbers does the improper

e | (Wera-ve-yve-vaa)

converge?



