LSU Problem Solving Seminar - Fall 2017 Oct. 25: Virginia Tech Math Contest Review

Prof. Karl Mahlburg

Website: www.math.lsu.edu/~mahlburg/teaching/Putnam.html

This week's practice sheet provides a detailed look at several of the problems from last weekend's 2017 Virginia Tech Regional Math Contest. Each contest problem is **preceded** by a related problem that illustrates some relevant techniques in a simpler context.

- 1. (a) Consider a quarter-circle of radius r in the first quadrant, which has the equation $y = f(x) = \sqrt{r^2 x^2}$ for $0 \le x \le r$. Prove that any line intersects the circle in at most two points.
 - (b) Suppose that f(x) is a decreasing function on $[0, \infty)$ that is also concave down this means that f''(x) < 0 for all x. Prove that any line intersects the graph of f(x) in at most two points.

Remark: Try to find both a geometric argument and a calculus argument!

2. [VTRMC **2017** # 1] Determine the number of real solutions to the equation $\sqrt{2-x^2} = \sqrt[3]{3-x^3}$.

Hint: Find the intersections of each curve with the lines y = c - x.

3. Recall the following trigonometric identities and derivatives:

$$\tan^{2}(u) + 1 = \sec^{2}(u),$$

$$\frac{d}{du}\tan(u) = \sec^{2}(u), \qquad \frac{d}{du}\sec(u) = \sec(u)\tan(u).$$

- (a) Try to prove the identities above!
- (b) Use the substitution $x = \tan(u)$ to evaluate the integral $\int_0^\infty \frac{1}{x^2 + 1} dx$.
- (c) Calculate the antiderivative $\int \sec(x) dx$ by first writing $\sec(x) = \frac{\sec(x)(\sec(x) + \tan(x))}{\sec(x) + \tan(x)}$, and then making the substitution $u = \sec(x) + \tan(x)$.
- 4. [VTRMC 2017 # 2] Evaluate $\int_0^a \frac{dx}{1 + \cos x + \sin x}$ for $-\pi/2 < a < \pi$. Use your answer to show that $\int_0^{\pi/2} \frac{dx}{1 + \cos x + \sin x} = \ln 2$.

Hint: Try to rewrite the integrand in terms of sec(x) and tan(x).

- 5. Suppose that a triangle ABC has angles $\alpha = \angle BAC, \beta = \angle ABC$, and $\gamma = \angle ACB$, and side lengths $a = |\overline{BC}|, b = |\overline{BC}|$, and $c = |\overline{AB}|$.
 - (a) The Law of Sines states that $\frac{\sin \alpha}{a} = \frac{\sin \beta}{b} = \frac{\sin \gamma}{c}$, and the Law of Cosines states that $a^2 = b^2 + c^2 2bc \cos \alpha$. Try to prove these!
 - (b) The Double-Angle formula for the sine function states that sin(2x) = 2 sin x cos x. Try to prove this too!

- 6. [VTRMC **2017** # **3**] Let *ABC* be a triangle and let *P* be a point in its interior. Suppose $\angle BAP = 10^{\circ}, \angle ABP = 20^{\circ}, \angle PCA = 30^{\circ}, \text{ and } \angle PAC = 40^{\circ}$. Find $\angle PBC$.
- 7. In this problem you will explore the use of *barycentric* coordinates in a triangle. If P is a point in a triangle ABC, the distance from P to the edge \overline{AB} is defined to be the length of the perpendicular line segment joining P to (the line extending) \overline{AB} , and is denoted by $d(P, \overline{AB})$.
 - (a) Suppose that ABC is an equilateral triangle of side length ℓ . Prove that for every point P in the triangle,

$$d(P, \overline{AB}) + d(P, \overline{AC}) + d(P, \overline{BC}) = \frac{\sqrt{3}}{2} \cdot \ell.$$

(b) Consider the plane (in \mathbb{R}^3) that intercepts the axes at $(x_0, 0, 0), (0, y_0, 0)$, and $(0, 0, z_0)$ (with $x_0, y_0, z_0 > 0$). Find the formula for this plane in the form

$$dx + ey + fz = k,$$

where d, e, f, and k are constants that you need to determine.

- (c) The intersection of this plane with the first octant (i.e., where $x, y, z \ge 0$) is a triangle. The *barycentric* coordinates for a point on this triangle are $\left(\frac{x}{x_0}, \frac{y}{y_0}, \frac{z}{z_0}\right)$.
- (d) Suppose that a triangle has side lengths a, b, and c. Show that it can be embedded in the first octant of three-dimensional Cartesian space as in part (b); in particular, show how x_0, y_0 , and z_0 are determined by a, b, and c.
- 8. [VTRMC 2017 # 4] Let P be an interior point of a triangle of area T. Through the point P, draw lines parallel to the three sides, partitioning the triangle into three triangles and three parallelograms. Let a, b, and c be the areas of the three triangles. Prove that $\sqrt{T} = \sqrt{a} + \sqrt{b} + \sqrt{c}$.
- 9. (a) Suppose that x and y are positive integers such that xy is a perfect square. Show that there are positive integers a, b, and s such that $x = a^2s, y = b^2s$, and a and b have no common factors (i.e., are "relatively prime").
 - (b) For positive real numbers x and y, the *arithmetic, geometric,* and *harmonic* means are defined, respectively, as

$$A(x,y) := \frac{x+y}{2}, \ G(x,y) := \sqrt{xy}, \ H(x,y) := \frac{2xy}{x+y},$$

Prove that $H(x,y) \leq G(x,y) \leq A(x,y)$, with equality if and only if x = y.

10. [VTRMC **2017** # **5**] Let
$$f(x,y) = \frac{x+y}{2}$$
, $g(x,y) = \sqrt{xy}$, $h(x,y) = \frac{2xy}{x+y}$, and let

$$S = \{(a,b) \in \mathbb{N} \times \mathbb{N} \mid a \neq b \text{ and } f(a,b), g(a,b), h(a,b) \in \mathbb{N}\},\$$

where \mathbb{N} denotes the positive integers. Find the minimum of f over S. Hint: The minimum value occurs in two distinct ways.... 11. The polynomial division algorithm implies that if $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 \in \mathbb{Z}[x]$ is a polynomial with integer coefficients, then for any $k \in \mathbb{Z}$ there is some polynomial $g(x) \in \mathbb{Z}[x]$ and constant $b \in \mathbb{Z}$ such that

$$f(x) = (x - k) \cdot g(x) + b.$$

- (a) Show that in fact the constant in the polynomial division algorithm is given by b = f(k).
- (b) Suppose that $f(x) \in \mathbb{Z}[x]$ is a polynomial with integer coefficients such that f(1) = 2. Determine all possible $n \in \mathbb{Z}$ such that f(n) = 21.
- 12. [VTRMC **2017** # 6] Let $f(x) \in \mathbb{Z}[x]$ be a polynomial with integer coefficients such that f(1) = -1, f(4) = 2, and f(8) = 34. Suppose $n \in \mathbb{Z}$ is an integer such that $f(n) = n^2 4n 18$. Determine all possible values for n.