
MATH 7230 Homework 1 - Spring 2017
Due Thursday, Jan. 26 at 10:30

You are required to turn in at least one of the following problems, and must complete a
total of 20 by semester’s end. Group work is allowed, but your solutions must be written up
individually.

The notation “Andrews A.B” means Example B at the end of Chapter A in the textbook.

1. In this problem you will describe the conjugacy classes of the symmetric group Sn.
Recall that two elements g, h in a group G are conjugates if g = aha−1 for some a ∈ G.

(a) Suppose that (a1 a2 · · · ak) ∈ Sn; this is a k-cycle. Prove that for any σ ∈ Sn,

σ(a1 a2 · · · ak)σ−1 = (σ(a1) σ(a2) · · · σ(ak)) .

(b) Show that any two k-cycles are conjugates.

(c) Prove that conjugacy classes in Sn are determined by partitions λ ⊢ n. In par-
ticular, if σ ∈ Sn has the disjoint cycle factorization σ = σ1σ2 · · ·σr, where σi is
a λi-cycle, then the conjugacy class of σ consists of all permutations that factor
into disjoint cycles of lengths λ1, . . . , λr.

2. Provide a bijective proof of Corollary 1.3. In particular, for d ≥ 1 let pd+1(n) be the
number of partitions of n into parts that are not multiples of d + 1, and let Q≤d(n)
denote the number of partitions of n in which each part occurs at most d times. Prove
that

pd+1(n) = Q≤d(n).

3. Andrews 1.3. This is easiest using generating functions. Can you also find a bijective
proof?

4. Andrews 1.9. Draw Ferrers diagrams and consider the conjugates.

In the following several problems you will explore an enumeration function that is closely
related to partitions, although unlike partitions, this case does turn out to have a simple
closed formula. An integer composition of n is a sequence of positive integers µ1, . . . , µr that
sum to n. Here there is no restriction on the ordering of the parts, and each distinct sequence
is counted. For example, the compositions of 4 are:

4, 3 + 1, 1 + 3, 2 + 2, 2 + 1 + 1, 1 + 2 + 1, 1 + 1 + 2, 1 + 1 + 1 + 1.

The composition function c(n) counts the number of compositions of n; the above example
shows c(4) = 8.

5. (a) Find the value of c(n) for n = 1, 2 and 3. By convention, we again set c(0) = 1.
Conjecture a formula for c(n).



(b) Prove the recurrence formula (valid for n ≥ 1)

c(n) =
n∑

j=1

c(n− j).

Hint: The j-th term corresponds to compositions of n whose first part is j.

(c) Use the previous part to give an inductive proof of the formula for c(n).

6. Define the generating function for compositions by C(q) :=
∑
n≥0

c(n)qn (here q is a

formal variable, and C(q) is in the power series ring R[[q]]).

(a) Let cj(n) be the number of compositions of n with exactly j parts. Explain why

∑
n≥0

cj(n)q
n =

qj

(1− q)j
.

(b) Next argue that c(n) =
∑

j≥1 cj(n). Conclude that

C(q) = 1 +
q

1− q
+

q2

(1− q)2
+ · · · .

(c) Evaluate the geometric series to find a closed-form expression for C(q). How does
this relate to Problem 5?

7. This series of problems ends with an alternative approach to enumerating compositions.

(a) Let Cn denote the set of compositions of n. For n ≥ 1, define two maps β, γ : Cn 7→
Cn+1 by the following operations:

β(µ1, µ2, . . . , µr) := (1, µ1, µ2, . . . , µr);

γ(µ1, µ2, . . . , µr) := (µ1 + 1, µ2, . . . , µr).

Prove that β and γ disjointly produce all compositions of n+ 1; i.e.,

β(Cn) ∪ γ(Cn) = Cn+1 and β(Cn) ∩ γ(Cn) = ∅.

Conclude that c(n+ 1) = 2c(n), and compare to Problem 5.

(b) The same idea can be encoded using generating functions. Explain the details of
the following recurrence:

C(q) = 1︸︷︷︸
Empty composition

+ q · C(q)︸ ︷︷ ︸
If µ1=1, remove it

+ q · (C(q)− 1)︸ ︷︷ ︸
If µ1>1, descrease by 1

Resulting composition is nonempty

.

Compare to Problem 6.


