
MATH 7230 Homework 2 - Spring 2017
Due Thursday, Feb. 2 at 10:30
www.math.lsu.edu/∼mahlburg/

You are required to turn in at least one of the following problems, and must complete a
total of 20 by semester’s end. Group work is allowed, but your solutions must be written up
individually.

The notation “Andrews A.B” means Example B at the end of Chapter A in the textbook.

1. The q-factorial (we will explore the reason for this name later) is defined by

(a; q)n :=
n−1∏
j=0

(1− aqj) = (1− a) (1− aq) · · ·
(
1− aqn−1

)
.

(a) Prove the following identity inductively:

(−q; q)n = 1 +

n∑
j=1

qj · (−q; q)j−1.

(b) Now prove the identity combinatorially. The left-hand side generates partitions
into distinct parts, all of which are at most n. For the right-hand side, explain
why the j-th term generates those partitions into distinct parts whose largest part
is j.

In the following problems you will prove some basic facts about the ring of formal power
series. See Niven’s paper (available on course webpage) for more details. If R is a ring (at
minimum, an integral domain), then the formal power series ring on R is

PR :=
{
α = [a0, a1, a2, . . . ] | an ∈ R for all n ≥ 0

}
,

with ring operations (here β = [b0, b1, . . . ])

α+ β := [an + bn]
∞
n=0;

α · β := [cn]
∞
n=0, with cn :=

n∑
i=0

aibn−i.

2. (a) Prove that PR is a commutative ring with unity. The additive identity is 0P :=
[0, 0, . . . ], and the multiplicative identity is 1P := [1, 0, . . . ].

(b) Furthermore, prove that PR is an integral domain (again, assuming that R is).

(c) Show that [1,−1, 0, 0, . . . ] · [1, 1, 1, . . . ] = 1P .

Remark: For this and the next part, you may find it easier to use the notation from

Problem 3.



(d) Prove that α has a multiplicative inverse α−1 (such that α ·α−1 = 1P ) if and only
if a0 is invertible in R (if R is a field, this just means a0 ̸= 0).

3. PR is related to the more typical notation for power series by setting q := [0, 1, 0, 0, . . . ]
and qj := [0, . . . , 0, 1, 0, . . . ], where aj = 1. Then PR is isomorphic to R[[q]] under the
identification

α ↔ a0 + a1q + a2q
2 + . . . .

(a) If R is a field with characteristic 0 (i.e. R), then it is a fact that roots of power
series exist. For example, if

α := 1 + 2q + 3q2 + 4q3 + . . . ,

find its square root β, which satisfies β · β = α.

(b) Now find the square root of β.

(c) The generalized Binomial Theorem states that for any complex γ,

(1 + q)γ =
∑
n≥0

γ · (γ − 1) · · · (γ − n+ 1)

n!
qn.

This is frequently proven as an analytic result via Taylor series. Compare to your
answers from parts (a) and (b).

In these next problems you will consider the analytic convergence of some of the infinite
products and sums that arise in the study of partitions. If a := (an)n≥1 is a sequence of
complex numbers, let

P (a) :=
∏
n≥1

(1 + an) and S(a) :=
∑
n≥1

an.

4. First, consider the case that all an are real.

(a) Prove that 1 + x ≤ ex for all real x.

(b) Suppose that an ≥ 0 for all n. Prove that

S(a) ≤ P (a) ≤ eS(a).

Thus S(a) converges if and only if P (a) does!

(c) Prove that if an ∈ (−1,∞) for all n, then the convergence of S(a) implies the

boundedness of the partial products of P (a), which are

N∏
n=1

(1 + an).

Remark: In general, the convergence of S(a) and P (a) are unrelated. For example, con-

sider

(
1 +

1√
2

)(
1− 1√

2
+

1

2

)(
1 +

1√
3

)(
1− 1√

3
+

1

3

)
· · · , so

a2n−1 := 1 +
1√
n
; and a2n := 1− 1√

n
+

1

n
.

Then P (a) converges, but S(a) diverges!



(d) Why is the range in part (c) restricted to an > −1?

5. The infinite product denotes a limit, i.e.

P (a) := lim
N→∞

N∏
n=1

(1 + an).

(a) Use Problem 4 to prove that if an ∈ C satisfy |an| < 1 for all n, and S(a) converges
absolutely (i.e.,

∑
|an| converges), then P (a) converges.

(b) Conclude that
∏
n≥1

(1− qn) converges for |q| < 1.

(c) Conclude further that the product in part (b) is non-zero (so that P (q) converges
as well).

6. Prove that if |q| < 1, the following sums converge absolutely:

(a)
∑
n≥1

qn∏n
j=1(1− qj)

;

(b)
∑
n≥1

qn
n−1∏
j=1

(1 + qj).

Remark: This shows that it makes sense analytically to take the limit as n → ∞ in Problem

1.


