
MATH 7230 Homework 3 - Spring 2017
Due Thursday, Feb. 16 at 10:30
www.math.lsu.edu/∼mahlburg/

You are required to turn in at least one of the following problems, and must complete a
total of 20 by semester’s end. Group work is allowed, but your solutions must be written up
individually.

The notation “Andrews A.B” means Example B at the end of Chapter A in the textbook.

The first set of problems illustrate some additional combinatorial settings where partitions
naturally occur.

1. (a) For nonnegative integers n1, n2, . . . , nr, the multinomial coefficient is defined by(
n1 + n2 + · · ·+ nr

n1, n2, . . . , nr

)
:=

(n1 + n2 + · · ·+ nr)!

n1!n2! · · ·nr!
.

This enumerates the number of distinct words formed with the symbols a1, . . . , ar,
where there are ni (indistinguishable) copies of ai. For example,

(
4

2,1,1

)
= 12, and

there are indeed 12 words formed from the symbols a, a, b, c :

aabc, aacb, abac, abca, acab, acba, baac, baca, bcaa, caab, caba, cbaa.

Explain why this is equivalent to choosing tiered rankings for n = n1 + · · · + nr

people, where n1 people are given first ranking, n2 people are given second ranking,
and in general, ni are given i-th ranking.

(b) Prove that multinomial coefficients arise from the following product:

(1 + x1 + . . . xr)
n =

∑
ni≥0

n1+···+nr=n

(
n

n1, . . . , nr

)
xn1
1 · · ·xnr

r .

(c) Both parts above immediately show that the multinomial coefficients are integers;
i.e., that (n1 + · · · + nr)! is divisible by n1! · · ·nr! for all ni ≥ 0. In fact, more
is true: if (n1, n2, . . . , nr) = 1f12f2 · · ·nfn in partition frequency notation, where
n = n1 + · · ·+ nr, then

(n1 + n2 + · · ·+ nr)!

n1! · · ·nr!f1! · · · fn!
is an integer. In particular, it counts the number of distinct set partitions of
[n] := {1, 2, . . . , n}, i.e., a disjoint union [n] = S1 ⊔ S2 ⊔ · · · ⊔ Sr, where |Si| = ni.

Remark: Even more remarkably, fixing n and summing over all partitions λ = (λ1, . . . , λr) =
1f1 · · ·nfn gives the total number of set partitions into r subsets, which are enumerated by
the second Stirling numbers,

S(n, r) =
∑
λ⊢n,

ℓ(λ)=r

n!

λ1! · · ·λr!f1! · · · fn!
.

It is known from entirely different methods that S(n, r) =
1

r!

r∑
j=0

(−1)r−j

(
r

j

)
jn.



2. (a) Consider all integers from 0 to 10k − 1, writing each one with k digits: N =
dk−1 · · · d1d0, di ∈ {0, 1, . . . 9}. Each such N has a partition λ(N) ⊢ k associated
to its it digit multiplicities, which are the number of occurrences of each digit.
For example, N = 7337 has λ(N) = (2, 2) since there are two distinct digits, each
occurring twice, whereas for N = 0506, λ(N) = (2, 1, 1).

Now count the N in reverse, grouping integers by the associated partition. In par-
ticular, suppose that λ ⊢ k, with parts (λ1, . . . , λℓ) and frequencies λ = 1f1 · · · kfk
(note that ℓ ≤ 10 and f1 + · · · + fk = ℓ). Show that the number of N associated
to λ is (

10

f1, f2, . . . , fk, 10− ℓ

)(
k

λ1, . . . , λℓ

)
.

For example, if k = 4 and λ = (3, 1), we are counting 4-digit integers with three
copies of one digit and one copy of another (e.g. 2272 or 8881). The claimed
formula is explained by(

10

1, 1, 8

)(
4

3, 1

)
= 10︸︷︷︸

Pick digit to
occur 3 times

· 9︸︷︷︸
Pick digit to
occur 1 time

· 4︸︷︷︸
Pick position for

single digit

= 360.

(b) Plug in for all partitions λ ⊢ 4, and make sure that your computations sum up to
a total of 10,000.

3. In this problem you will prove Faa di Bruno’s formula, which calculates higher deriva-
tives for composite functions (i.e. repeated differentiation of the Chain Rule). The
statement is that for n ≥ 0, and f, g sufficiently differentiable functions,

dn

dxn
f
(
g(x)

)
=

∑
For 1≤i≤n,fi≥0:

1·f1+2·f2+···+n·fn=n

n!

1!f12!f2 · · ·n!fnf1! · · · fn!
f (f1+···+fn)

(
g(x)

) n∏
j=1

(
g(j)(x)

)fj
.

Note that the initial part of the formula can be rewritten more explicitly in terms of
partitions: ∑

λ=(λ1,...,λℓ)⊢n,
λ=1f12f2 ···nfn

n!

λ1! · · ·λℓ!f1! · · · fn!

(a) Verify the formula for n = 1, 2, 3.

(b) Prove the general case. Try to induct on n.

In problems 4–5 you will continue working in the ring of formal power series with complex
coefficients. See Niven’s paper (available on course webpage) for more details.

4. In C[[q]], a series
∑

n≥0 an is said to be summable if for any N ∈ N there is an M such

that for n > M , an is O(qN ), which means that an = qN · bn for some bn ∈ C[[q]]. In
other words, the terms an “eventually” involve only larger and larger powers of q.



(a) What follows is an incorrect calculation. Explain what is wrong and how it can
be repaired:

∑
j≥0

qj

(q; q)j
=

∑
j≥0

(
qj − 1

)
+ 1

(q; q)j

=
∑
j≥1

−1

(q; q)j−1
+

∑
j≥0

1

(q; q)j

= −
∑
j≥0

1

(q; q)j
+
∑
j≥0

1

(q; q)j
= 0.

(b) A formal power series can be summable even if it is poorly behaved analytically.
For example, let F (x) :=

∑
n≥0 n!x

n be the generating function for factorials; note
that this diverges for all complex numbers x ̸= 0! However, as a formal power
series, F (x) even has a multiplicative inverse.

Let C1 := 1, and for n ≥ 2,

Cn := n!−
n−1∑
m=1

Cm · (n−m)!.

Prove that F (x)−1 = 1−
∑
n≥1

Cn.

Remark: Cn enumerates the number of connected permutations of n, which are those that

are not a disjoint product of the form σmτ , where σm is a permutation on 1, . . . ,m.

5. This problem uses formal power series to prove a relation between elementary number
theory and partitions. You may use the fact that basic functions/operations such as
logarithms and differentiation are defined for formal power series (see Niven’s paper for
details).

(a) Recall the divisor function, which is defined by σ(n) :=
∑

d|n d. For example,
d(6) = 1 + 2 + 3 + 6 = 12. Prove that∑

n≥1

nqn

1− qn
=

∑
n≥1

σ(n)qn.

(b) Let P (q) := 1
(q;q)∞

=
∑

n≥0 p(n)q
n. Calculate the logarithmetic derivative:

1

P (q)
· d

dq
P (q) =

d

dq
log(P (q)).

How does this compare to part (a)?

(c) Prove a result of Euler, that for n ≥ 1,

np(n) =

n∑
k=1

σ(k)p(n− k).



Remark: A similar argument, using P (q)−1 in place of P and applying the the Pentagonal

Number Theorem, gives another identity of Euler:

∑
k∈Z

(−1)kσ

(
n− k(3k − 1)

2

)
=

(−1)m−1 · m(3m− 1)

2
if n =

m(3m− 1)

2
;

0 otherwise.

Problems 6–8 address Jacobi’s Triple Product identity. We will primarily use the second
form, which states ∑

n∈Z
(−1)nznq

n(n−1)
2 =

(
z, z−1q, q; q

)
∞.

6. (a) Show that if z = 1 is substituted directly into the identity, then both sides are 0.

(b) Verify that the left-hand side can be rewritten as∑
n≥0

(−1)nq
n(n+1)

2
(
z−n − zn+1

)
.

(c) Now divide by (1 − z) and take the limit as z → 1. You should conclude the
identity ∑

n≥0

(−1)n(2n+ 1)q
n(n−1)

2 =
∏
n≥1

(1− qn)3 .

7. In this problem you will explore an alternative proof of Jacobi’s Triple Product.

(a) Use Euler’s Theorem to obtain the double sum:

(
z, z−1q; q

)
∞ =

∑
n,m≥0

(−1)n+mzn−mq
n(n−1)

2
+

m(m+1)
2

(q; q)n(q; q)m
.

(b) Make the substitution k = n−m and show that the above is equal to the following
expression:

∑
k≥0

(−1)kzkq
k(k−1)

2

∑
m≥0

qm
2+mk

(q; q)m+k(q; q)m
+
∑
k<0

(−1)kzkq
k(k−1)

2

∑
n≥0

qn
2+n(−k)

(q; q)n(q; q)n+(−k)
.

(c) The proof concludes by applying the following identity, which holds for any k ≥ 0:

∑
m≥0

qm(m+k)

(q; q)m+k(q; q)m
=

1

(q; q)∞
.

You are not required to prove this, but you are encouraged to try! One method is
to make an appropriate substitution in Cor. 2.6 from Andrews. Another is to use
a Durfee rectangle decomposition of partitions; this is a modification of the proof
at the end of Chapter 2.

8. This problem gives another proof of Jacobi’s Triple Product. Let F (z; q) :=
(
z, z−1q, q; q

)
∞

denote the product side.



(a) Prove that F (z; q) = −zF (zq; q) and F (z; q) = F (z−1q; q).

(b) Consider the Laurent expansion in z, so

F (z; q) =
∑
n∈Z

an(q)z
n.

Use the properties from part (a) to conclude that an = −qn−1an−1 for n > 0, and
a−n = qn · an.

(c) Finally, show that

F (z; q) = a0(q)
∑
n∈Z

(−1)nznq
n(n−1)

2 .

Remark: It is actually still some work to show that a0(q) = 1; note that it is not possible

to plug in z = 0!

9. A famous class of partitions was studied by Rogers and Ramanujan. Let RR denote
the set of partitions λ into distinct parts such that no consecutive integers appear as
parts; i.e.,

RR :=
{
λ ∈ P | λi ≥ λi+1 + 2 for 1 ≤ i ≤ ℓ(λ)

}
.

(a) Prove the generating function identity

R(x; q) :=
∑

λ∈RR
xℓ(λ)q|λ| =

∑
n≥0

xnqn
2

(q; q)n
.

Hint: Recall the combinatorial proof of Euler’s second identity (Andrews (2.2.6)), where

a diagonal “staircase” of parts of size 1, 2, . . . , ℓ was removed. For Rogers-Ramanujan

partitions, consider a staircase of parts 1, 3, 5, . . . , 2ℓ− 1.

(b) Prove the q-difference equation

R(x; q)−R(xq; q) = xqR(xq2; q).

There are multiple ways to approach this; you can work directly with the series
from part (a), or you can also think combinatorially and consider whether or not
1 occurs in λ ∈ RR.

10. Recall the notation for basic hypergeometric series:

2ϕ1

(
a, b

c
; q, t

)
:=

∑
n≥0

(a, b; q)nt
n

(q, c; q)n
.

Heine’s transformation (Cor. 2.3 in Andrews) is then written as

2ϕ1

(
a, b

c
; q, t

)
=

(at, b; q)∞
(c, t; q)∞

2ϕ1

(
c
b , t

at
; q, b

)
.

In fact, Heine and Rogers also found two other related transformations:

2ϕ1

(
a, b

c
; q, t

)
=

(
c
b , bz; q

)
∞

(z, c; q)∞
2ϕ1

(
b, abz

c
bz

; q,
c

b

)
; (1)

2ϕ1

(
a, b

c
; q, t

)
=

(
abz
c ; q

)
∞

(z; q)∞
2ϕ1

(
c
a ,

c
b
c
; q,

abz

c

)
. (2)



Prove at least one of these.

Remark: Note that the original function and the right side of (2) are clearly symmetric in a

and b, but the other expressions are not. . . this leads to a very short proof that links all three,

although you can also just prove each identity directly.


