
MATH 7230 Homework 4 - Spring 2017
Due Thursday, Mar. 2 at 10:30
www.math.lsu.edu/∼mahlburg/

You are required to turn in at least one of the following problems, and must complete a
total of 20 by semester’s end. Group work is allowed, but your solutions must be written up
individually.

The notation “Andrews A.B” means Example B at the end of Chapter A in the textbook.

1. As proved in lecture, the Chu-Vandermonde identity states that(
m+ n

k

)
=

k∑
j=0

(
m

j

)(
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)
. (1)

This is sometimes written alternatively as a hypergeometric summation formula. Recall
that Gauss’ hypergeometric series is defined by
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,

where the Pochhammer symbol is (x)n := x·(x+1) · · · (x+n−1). The Chu-Vandermonde
identity is then
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(
−N, −b

c
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)
=

(c+ b)N
(c)N

. (2)

Here k is a nonegative integer, and b and c are arbitrary. Prove that the two formulations
(1) and (2) are equivalent.

Problems 2–4 explore some properties of q-calculus and the relation to q-basic hypergeometric
series.

2. The q-derivative of a function f(x) is defined by

Dq(f(x)) :=
f(qx)− f(x)

(q − 1)x
.

Note that as q → 1, this coincides with the usual definition of the derivative.

(a) Prove that Dq(x
n) = [n]q · xn−1, where [n]q :=

1− qn

1− q
is a q-integer.

(b) Prove that product rule for the q-derivative:

Dq(fg(x)) = f(qx) ·Dq(g(x)) +Dq(f(x)) · g(x).



(c) Define the q-analog of a binomial power as (x− a)nq :=

n∏
j=1

(
x− aqj

)
. Prove that

Dq

(
(x− a)nq

)
= [n]q · (x− a)n−1

q .

Remark: This result leads to q-Taylor’s theorem:

f(x) =
∑
n≥0

Dn
q (f(x))

∣∣∣
x=a

·
(x− a)nq
[n]q!

.

3. Jackson’s indefinite q-integral is defined by

Iq(f(x)) =

∫
f(x)dq(x) := (1− q)x ·

∑
n≥0

qnf (xqn) .

(a) Calculate Iq(1).

(b) Prove that this is an anti-derivative, so that Dq(Fq(f(x)) = f(x).

(c) The definite q-integral is defined similarly, by plugging in endpoints as usual:∫ b

a
f(x)dq(x) = (1− q)x ·

∑
n≥0

qkf (xqn)

∣∣∣∣∣
b

a

= (1− q)a ·
∑
n≥0

qkf (aqn)− (1− q)b ·
∑
n≥0

qkf (bqn) .

Show that

∫ 1

0
xndq(x) =

1

[n]q
.

4. The classical Gamma function is defined (for Re(s) > 0) by

Γ(s) :=

∫ ∞

0
e−tts−1dt.

It satisfies the functional equation

Γ(s+ 1) = sΓ(s), (3)

which is also used to extend Γ meromorphically. This function “interpolates” the fac-
torial in the sense that Γ(n+ 1) = n! for n ≥ 0.

This is also an alternative expression as an infinite product, which is valid for all complex
s excluding the negative integers:

Γ(s) =
1

s

∏
n≥1

(
1 +

s

n

)−1
(
1 +

1

n

)s

.

It is this second definition that most naturally leads to the q-Gamma function, which
is defined by

Γq(s) := (1− q)1−s (q; q)∞
(qs; q)∞

.



(a) Verify that Γ(s) satisfies (3), using either (or both) expressions.

(b) Prove the functional equation

Γq(s+ 1) =
1− qs

1− q
Γq(s).

(c) Finally, in order to see that limq→1 Γq(s) = Γ(s), prove that

Γq(s+ 1) =
∏
n≥1

(
1− qn+1

)s
(1− qs+n) (1− qn)s−1 .

Evaluate the limit as q → 1 termwise and recover the product formula for Γ(s+1).

Remark: This is not a fully rigorous proof of limq→1 Γq(s) = Γ(s), as there are issues of

convergence that were ignored.

Recall that the q-binomial coefficients are defined by[
n
m

]
q

:=
(q; q)n

(q; q)m(q; q)n−m
.

5. Prove that lim
n→∞

[
n
m

]
q

=
1

(q; q)m
.

6. The first identity of Andrews’ Theorem 3.3 states that

(z; q)n =
n∑

j=0

[
n
j

]
q

(−1)jq
j(j−1)

2 zj .

Prove this in at least two different ways:

• Induction;

• Special case of Cauchy’s Theorem (Andrews Thm 2.1);

• Combinatorial, setting z 7→ −zq, and considering the generating function for par-
titions into distinct parts of size at most n.

7. Andrews 3.1.


