
MATH 7230 Homework 6 - Spring 2017
Due Thursday, Mar. 23 at 10:30
www.math.lsu.edu/∼mahlburg/

You are required to turn in at least one of the following problems, and must complete a
total of 20 by semester’s end. Group work is allowed, but your solutions must be written up
individually.

The notation “Andrews A.B” means Example B at the end of Chapter A in the textbook.

1. As discussed in lecture, the generating function for the inversion statistic on multiset
permutations is related to q-multinomial coefficients. In particular, if σ is a permuta-
tion (i.e., a reordering) of the multiset {1m12m2 · · · rmr}, then the inversion statistic is
defined by

inv(σ) := #
{

(i, j) | i < j and σi > σj
}
.

Theorem 3.11 in Andrews states that for any permutation τ ∈ Sr,∑
σ∈Sym(1m12m2 ···rmr )

qinv(σ) =
∑

σ∈Sym(1
mτ(1)2

mτ(2) ···rmτ(r) )

qinv(σ).

In this problem you will (partially) explore the combinatorial proof mentioned in lecture.

(a) First, prove the theorem for the case r = 2. If σ ∈ Sym(1m2n), first replace all 1’s
by 2’s, and all 2’s by 1’s. Then define σ′ by reversing the permutation. Precisely,

σ′ = σ′1σ
′
2 · · ·σ′m+n,

where σ′i := 3 − σm+n+1−i. Prove that σ 7→ σ′ is a bijection from Sym(1m2n) to
Sym(1n2n), and inv(σ) = inv(σ′).

(b) Theorem 3.5 in Andrews uses partition diagrams to prove that∑
σ∈Sym(1m2n)

qinv(σ) =

[
n+m
n, m

]
q

.

In particular, a multiset permutation σ is associated to an edge path that traces
out the lower boundary of a partition λ ∈ Pn×m. Provide an alternative proof of
part (a) by considering the conjugate partition λ′.

(c) Prove the case ∑
σ∈Sym(1m12m23m3 )

qinv(σ) =
∑

σ∈Sym(1m22m13m3 )

qinv(σ).

In particular, given σ ∈ Sym(1m12m23m3), fix the position of the 3’s, and apply
the procedure from part (a) to the 1’s and 2’s to obtain σ′ ∈ Sym(1m22m13m3).
Complete the proof by arguing that inv(σ) = inv(σ′).

Remark: As mentioned in lecture, this procedure can be iterated to prove the general

case, using the fact that any permutation τ ∈ Sr can be written as a product of adjacent

transpositions (i, i+ 1).



Problems 2 – 4 lead to an alternative proof of Theorem 3.1 from Andrews (which states
that the q-binomial coefficient

[
N+M
M

]
q

generates restricted partitions in PN×M ). Be sure

to use only the combinatorial/inductive arguments outlined below, and do not appeal to
Theorem 3.1.

2. In this problem you will answer Andrews 3.13 by carefully thinking about generating
functions and parts. Denote the partitions under consideration by

E2,j :=
{
λ | `(λ) = j, λ1 ≤ λ2 + i

}
.

Let Pj be the set of partitions with exactly j parts, with generating function Pj(q) :=∑
λ∈Pj

q|λ| =
qj

(q; q)j
.

(a) Show that the complement of E2,j in Pj is

Ec2,j =
{
λ | `(λ) = j, λ1 ≥ λ2 + i+ 1

}
.

(b) Suppose that λ ∈ Ec2,j , with parts λ1, λ2, . . . , λj . Define λ̃ by setting λ̃1 := λ1−i−1,

and λ̃r := λr for 2 ≤ r ≤ j. Show that the map λ 7→ λ̃ is a bijection from Ec2,j to
Pj .

(c) Translate part (b) into the generating function identity∑
λ∈Ec2,j

q|λ| = qi+1Pj(q).

Conclude the claimed result from the problem statement, that∑
λ∈E2,j

q|λ| =
(
1− qi+1

)
Pj(q).

3. In this problem you will answer Andrews 3.14. The general approach will be an induc-
tive argument on k. Note that Problem 2 is the case k = 1.

For 1 ≤ k ≤ j − 1 (indexed to be consistent with Andrews), define

Ek+1,j :=
{
λ | `(λ) = j, λ1 ≤ λk+1 + i

}
.

Denote the corresponding generating functions by

Ek+1,j(q) :=
∑

λ∈Ek+1,j

q|λ|.

(a) First consider the case k = 2. Show that E3,j ⊆ E2,j , with complement (relative to
E2,j)

Ec3,j =
{
λ | `(λ) = j, λ1 − λ2 ≤ i, (λ1 − λ2) + (λ2 − λ3) ≥ i+ 1

}
.



Figure 1: A hook of length 5 in the partition λ = 8 + 6 + 3 + 2 + 2.

(b) Suppose that λ ∈ Ec3,j , and define λ̃ by removing a λ1–λ2 hook of length i + 2.

Algebraically, this is achieved by setting λ̃1 := λ2 − 1, λ̃2 := λ1 − i − 1, and
λ̃r := λr for 3 ≤ r ≤ j. Note that |λ̃| = |λ| − i− 2.

This definition is most easily understood by visualizing the “hook” along the bot-
tom layer of blocks in the partition diagram. See Figure 1, which illustrates the
case that λ = 8 + 6 + 3 + 2 + 2. The λ1–λ2 hook of length 5 is outlined in blue,
and once it is removed, the remaining partition is λ̃ = 5 + 4 + 3 + 2 + 2.

Show that the map λ 7→ λ̃ is a bijection from Ec3,j to E2,j . Conclude the generating
series identity

E3,j(q) =
(
1− qi+2

)
E2,j(q).

By Problem 2, E3,j(q) =
(
1− qi+2

) (
1− qi+1

)
Pj(q), as desired.

(c) Similarly, suppose that the formula has been proved for Ek,j(q), and consider

λ ∈ Eck+1,j . Define λ̃ by removing a λ1–λ2–· · · –λk+1 hook of length i + k. Draw

the appropriate picture and/or write out the definition of λ̃ precisely.

Conclude that
Ek+1,j(q) =

(
1− qi+k

)
Ek,j(q).

4. Andrews 3.15. In particular, show that Theorem 3.1 follows from the case k = j − 1,
which shows that

Ek,j(q) =

(
qi+1; q

)
j
qj

(q; q)j
.

Now suppose that λ ∈ Ek,j , and define µ by µr := λr − λj for 1 ≤ r ≤ j − 1. Show that

µ ∈ Pi×(j−1). Conclude that Ek,j(q) =
qj

1− qj
·Gi×(j−1)(q).

An important tool in asymptotic analysis is the ability to estimate integrals using the Method
of Steepest Descent. In Problems 5–6 you will use this technique to prove Stirling’s formula
for the factorial (or Gamma) function,

n! ∼
√

2πn
(n
e

)n
. (1)

See K. Conrad’s notes for more details:
(http://www.math.uconn.edu/∼kconrad/blurbs/analysis/stirling.pdf).



5. (a) Recall that the Gamma function is defined by Γ(s + 1) =

∫ ∞
0

e−ttsdt. Suppose

that s ≥ −1, and consider the integrand as a function of t, f(t) = e−tts. Prove
that f(t) has a maximum at t = s. Also prove that f(t) has inflection points at
t = s±

√
s; the fact that these are symmetric around the peak is not essential to

the general technique, but it does strongly suggest that the bulk of the integral’s
contribution occurs in the interval [s−

√
s, s+

√
s].

(b) Following the observations above, make the change of variables t 7→ s+
√
st, and

fill in the details to obtain the formula

Γ(s+ 1) =
(s
e

)s√
s

∫ ∞
−
√
s

(
1 +

t√
s

)s
e−
√
stdt.

(c) Calculate the Taylor expansion and write the integrand as

exp

(
s log

(
1 +

t√
s

)
−
√
st

)
= exp

∑
k≥2

(−1)k−1
tk

ks
k
2
−1

 .

Derive Stirling’s formula by approximating the integral using only the k = 2 term,
and then evaluating the Gaussian integral:

Γ(s+ 1) =
(s
e

)s√
s

∫ ∞
−
√
s

exp

∑
k≥2

(−1)k−1
tk

ks
k
2
−1

 dt

∼
(s
e

)s√
s

∫ ∞
−
√
s
e−

t2

2 dt ∼
(s
e

)s√
s

∫ ∞
−∞

e−
t2

2 dt. (2)

You will fill in the details of the approximations in Problem 6.

6. (a) The final approximation in (2) requires that the integral from −∞ to −
√
s be

negligible asymptotically. In fact, you will now show that it is exponentially small.
In particular, consider ∫ −√s

−∞
e−

t2

2 dt,

and make the substitution t = −
√
u. You should obtain∫ ∞
s

e−
u
2
du

2
√
u
.

Now bound the integrand using e−
u
2

1√
u
< e−

u
2 , and evaluate.

(b) The first approximation in (2) follows from Taylor’s Theorem with Remainder,

which shows that log(1 + x) = x − x2

2 + O(x3). In fact, the constant here is
uniform, so that ∣∣∣∣log(1 + x)− x+

x2

2

∣∣∣∣ < cx3



for some c. Then

Γ(s+ 1) =
(s
e

)s√
s

∫ ∞
−
√
s
e−

t2

2 · eO
(
t3√
s

)
dt

=
(s
e

)s√
s

∫ ∞
−
√
s
e−

t2

2 ·
(

1 +O

(
t3√
s

))
dt. (3)

Use integration by parts to show that∫ ∞
0

t3e−
t2

2 dt = 2

∫ ∞
0

te−
t2

2 dt = 2,

and conclude that the big-O term in (3) contributes(s
e

)s√
s · 1√

s

∫ ∞
−
√
s
O

(
e−

t2

2 t3
)
dt = O

((s
e

)s)
.

In particular, this is 1√
s

smaller than the main term in Stirling’s formula, which is

a polynomial error.
Remark: Working with more terms in the Taylor expansion gives an “asymptotic expan-
sion” with higher precision; for example,

n! =
(n
e

)n√
2πn

(
1 +

1

12n
+O

(
1

n2

))
.

7. Recall that the Fibonacci numbers are defined by F0 = 0, F1 = 1, and Fn = Fn−1+Fn−2
for n ≥ 2.

(a) Let c12(n) denote the number of compositions of size n where all of the parts are
1 or 2. Prove that c12(n) = Fn+1.

Hint: Show that c12(n) = c12(n− 1) + c12(n− 2) by separating the cases that the first part

is 1 or 2.

(b) Andrews 4.1. Let c>1(n) denote the number of compositions of size n where
all of the parts are larger than 1. Suppose that µ = (µ1, µ2, . . . , µ`) is such a
composition. Show that if µ1 > 2, then (µ1−1, µ2, . . . , µ`) is counted by c>1(n−1);
if µ1 = 2, then (µ2, . . . , µ`) is counted by c>1(n − 2). Conclude that c>1(n) =
c>1(n− 1) + c>1(n− 2), and finally show that c>1(n) = Fn−1.

8. In Problem 7 you proved that for n ≥ 1, c12(n) and c>1(n+ 2) are both equal to Fn+1.
Give a direct bijective proof that c12(n) = c>1(n+ 2).

9. In this problem you will prove the Ramanujan congruence p(7n+ 5) ≡ 0 (mod 7). The
argument is similar to the modulo 5 congruence, which is outlined in Andrews 10.7 –
10.13. Begin by writing∑

n≥0
p(n)qn =

1

(q; q)∞
= (q; q)3∞ · (q; q)3∞ ·

1

(q; q)7∞
.

(a) Show that
1

(q; q)7∞
≡
∑
r≥0

p(r)q7r (mod 7).



(b) Recall the identity from Homework 3, Problem 6:

(q; q)3∞ =
∑
m≥0

(−1)m(2m+ 1)q
m(m+1)

2 .

By considering all possible values of m mod 7, show that

(q; q)3∞ · (q; q)3∞ ≡
∑

k 6≡5 (mod 7)

a(k)qk (mod 7),

where a(k) are certain coefficients (the key point is that there are no terms of the
form q7k+5).

(c) Conclude that ∑
n≥0

p(n)qn ≡
∑

n 6≡5 (mod 7)

c(n)qn (mod 7).


