
MATH 7230 Homework 7 - Spring 2017
Due Thursday, Apr. 6 at 10:30
www.math.lsu.edu/∼mahlburg/

You are required to turn in at least one of the following problems, and must complete a
total of 20 by semester’s end. Group work is allowed, but your solutions must be written up
individually.

The notation “Andrews A.B” means Example B at the end of Chapter A in the textbook.

In Problems 1 – 2 you will fill in some of the details in the theory of formal infinite product
representations of formal power series.

1. (a) Suppose that f(q) = 1+
∑

n≥1 a(n)q
n ∈ Z[[q]] is a formal power series with integer

coefficients. We proved in class that there is a corresponding formal power series

f(q) =
∏
m≥1

(1− qm)b(m) ,

where b(m) ∈ Z. Rewrite the proof in your own words (and fill in any missing
details!).

(b) Now consider the case that f is not monic, so f(q) =
∑
n≥0

a(n)qn ∈ Z[[q]]. Prove

that the formal power series has the form

f(q) = a(0)
∏
m≥1

(1− qm)b(m) ,

where now b(m) ∈ Q.

(c) A much more general case is

f(q) =
∑
n≥N

a(n)qn+r,

where N ∈ Z, r ∈ R, and a(n) ∈ R. Use the generalized Binomial Theorem to
prove that the formal product has the form

f(q) = c qs
∏
m≥1

(1− qm)b(m),

where s, c, b(m) ∈ R.

Remark: The case that a(n), r ∈ Q is most relevant for algebraic applications, such as

Borcherds’ proof of the Monstrous Moonshine Conjecture.

2. Calculate the exponents (out to the given power of q) of the formal infinite product
expansions for each of the following series. You may do this by hand, or by find-
ing/programming a computational routine, or even by recognizing a known identity
from the literature!



(a) 1 + q + q2 + q3 + 2q4 + 2q5 + 3q6 + 3q7 + 4q8 + 5q9 + · · · ;
(b) 1 + q2 + q3 + q4 + q5 + 2q6 + 2q7 + 3q8 + 3q9 + · · · ;
(c) 1 + 2q2 +O

(
q11

)
;

(d) 1 + 2q + 3q2 + 3q3 + 3q4 + 3q5 + 3q6 + q7 − q8 − 3q9 − 3q10 + · · · .

In Problems 3 – 4 you will prove Lehmer’s result on partitions with gap conditions, which
states that there are no “simple” infinite product identities for partitions whose parts differ
by at least 3.

3. A partition has d-gaps if λi−λi+1 ≥ d for all i. For example, the case d = 1 is partitions
into distinct parts, and d = 2 is the Rogers-Ramanujan partitions. Let qd(n) count the
number of partitions of n with d-gaps. Prove that

fd(q) :=
∑
n≥0

qd(n)q
n =

∑
n≥0

q
dn(n−1)

2
+n

(q; q)n
. (1)

4. Lehmer proved that fd(q) cannot equal a product of the form
1

(1− qa1)(1− qa2) · · ·
.

His proof proceeds by contradiction, considering the first several terms of (1). Suppose
to the contrary that there are indeed a1 < a2 < . . . such that∏
j≥1

1

1− qaj
= 1 +

q

1− q
+

qd+2

(1− q)(1− q2)
+

q3d+3

(1− q)(1− q2)(1− q3)
+O

(
q6d+4

)
. (2)

(a) Show that a1 = 1, and a2 = d + 2 (recalling Problem 1 if you solved it, although
it is not necessary!).

(b) Multiply (2) by (1− q)(1− qd+2), obtaining∏
j≥3

1

1− qaj
= 1− qd+2 +

qd+2
(
1− qd+2

)
1− q2

+
q3d+3

(
1− qd+2

)
(1− q2) (1− q3)

+O
(
q6d+4

)
. (3)

Observe that all coefficients on the left side of (3) are non-negative.

(c) If d is odd, obtain a contradiction by showing that the coefficient of q2d+4 on the
right side of (3) is negative.

(d) Otherwise, if d is even, show that aj = d+2j− 2 for 2 ≤ j ≤ d
2 +2 (note that you

have already found the j = 2 value). In particular, multiply (3) by
(
1− qd+4

)
,

and then consider the resulting coefficient of q2d+8 to obtain a contradiction. You
will need to take some care to ensure that the q3d+3 term does not interfere. . . .

Remark: Let Qd denote the partitions with d-gaps. Alder extended Lehmer’s result by showing

that there is also no simple infinite product representation for Qd,≥k (parts at least k).

Problems 5 – 6 address some of the power series manipulations required for the proof of
Schur’s theorem from lecture. Supplementary definitions and notation:

• If λ = (λ1, . . . , λℓ) ∈ P, define the “+k” map by adding k to each part, and denote it
by

λ+ k := (λ1 + k, . . . , λℓ + k).



• For a subset of partitions A ⊂ P, denote the generating function by

fA(x; q) :=
∑
λ∈A

xℓ(λ)q|λ|.

Furthermore, let A≥k :=
{
λ ∈ A | λi ≥ k ∀ i

}
, and define A>k analogously.

• For k ∈ N, A ⊂ P is strongly closed under “+k” if λ 7→ λ+k gives a bijection A ↔ A>k

(with inverse map λ 7→ λ − k). We say that A is strongly closed under K ⊂ N if it is
strongly closed for all k ∈ K.

5. (a) Suppose that A is strongly closed under K. If k ∈ K, prove that

fA>k
(x; q) = fA≥k+1

(x; q) = fA(xq
k; q).

(b) Verify that the set of all partitions P is strongly closed under N. Conclude that

fP≥k
(x; q) =

1

(xqk; q)∞
.

6. (a) Recall from Homework 3 Problem 9 that the Rogers-Ramanujan partitions are
defined by

RR :=
{
λ ∈ P | λi ≥ λi+1 + 2 for 1 ≤ i ≤ ℓ(λ)

}
.

Prove that RR is strongly closed under N.
Remark: In fact, the generating functions for RR and RR≥2 (with x = 1) are seen above

in Problem 2 (a) and (b).

(b) The Schur (gap 3) partitions are defined by

S :=

{
λ
∣∣∣ λi − λi+1 ≥

{
4 if 3 | λi

3 otherwise,
∀ i

}
.

Show that S is strongly closed under 3N.
Remark: This was used in the proof of Schur’s theorem, as combined with Problem 5 it

implies that fSj+3(x; q) = fSj (xq
3; q).

7. A key final step in Andrews’ proof of Schur’s partition theorem required Appell’s Com-
parison Theorem. This states that if a (complex) sequence {an}∞n=1 converges to a limit
a, then

lim
x→1−

(1− x) ·
∑
n≥0

anx
n = a.

(a) Prove Appell’s Comparison Theorem using the analytic definition of limit. The
notation x → 1− indicates that x approaches 1 from below on the real line (or in
this case, along any path inside the complex unit circle) - why is this necessary?

Remark: Is there a version of Appell’s Comparison Theorem for formal power series rather

than the analytic statement?



(b) As a simple example, apply Appell’s Comparison Theorem to evaluate f(1) where

f(x) = f(x; q) := (1− x)
∑
n≥0

xn

(q; q)n
.

Compare to the expansion of
1

(x; q)∞
provided by Euler’s Identity (Andrews

(2.2.5)).

Problems 8 – 10 prove some initial facts about the sum-product identity attributed to
Göllnitz and Gordon’s independent work in the 1960s (although the analytic form was shown
earlier by Slater, and essentially the same identities are found in Ramanujan’s notebooks).

8. Define the set of Göllnitz-Gordon partitions with the gap-2 condition given by

GG :=

{
λ | λi − λi+1 ≥

{
3 if 2 | λi

2 otherwise
∀i

}

(a) Explain why the condition for λ ∈ GG can be equivalently stated as distinct parts
such that no two parts are consecutive integers, and all even parts differ by at
least 4.

(b) Recalling Problem 5, show that GG is strongly closed under 2N.

9. In this problem you will derive the “sum-side” of the Göllnitz-Gordon identity. Denote
the generating function and enumeration functions for Göllnitz-Gordon gap-2 partitions
by

fGG(x) = fGG(x; q) =
∑

m,n≥0

g(m,n)xmqn :=
∑
λ∈GG

xℓ(λ)q|λ|.

Furthermore, let gj(m,n) only count those λ ∈ GG with m parts, size n, and smallest
part at least j; denote the corresponding generating functions by fj(x) (note that
f1(x) = fGG(x)).

(a) Prove the system of recurrences:

g1(m,n) = g2(m,n) + g3(m− 1, n− 1),

g2(m,n) = g3(m,n) + g5(m− 1, n− 2).

(b) Using the fact that fj+2(x) = fj(xq
2) (cf. Problem 8 part (b) and Problem 8 part

(a)), prove the q-difference equation

f1(x) = (1 + xq)f1(xq
2) + xq2f1(xq

4). (4)

The direct proof proceeds by working with the corresponding generating functions
from part (a) and solving the system to isolate only f1 terms. If you prefer, you
may provide a direct combinatorial proof of the q-difference equation.



(c) Expand (4) in powers of x, writing f1(x; q) =
∑
m≥0

αm(q)xm. Solve for αm and

conclude the hypergeometric representation

fGG(x; q) =
∑
n≥0

xnqn
2 (−q; q2

)
n

(q2; q2)n
. (5)

Remark: The “product-side” states that

fGG(1; q) =
(
q, q4, q7; q8

)−1

∞ ,

i.e. the Göllnitz-Gordon gap-2 partitions are equinumerous with partitions into parts that

are 1, 4, 7 (mod 8).

10. In this problem you will provide a combinatorial proof of (5). The 2-modular diagram

of a partition is constructed by writing a row λi as
(
⌈λi

2 ⌉ − 1
)

2’s, followed by the

remainder λi (mod 2) ∈ {1, 2} (see Examples 1.6 – 1.7 in Andrews). For example, the
partition λ = 18+14+11+9+6+2 ∈ GG (which will be a running example throughout
this problem) has 2-modular diagram

2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2
2 2 2 2 2 1
2 2 2 2 1
2 2 2
2

(a) Suppose that λ ∈ GG with ℓ(λ) = ℓ. Explain why λ must have an “odd ℓ-triangle”
of size ℓ. This means that λi ≥ 2(ℓ − i) + 1 for 1 ≤ i ≤ ℓ; this can be viewed as
a triangle of side length ℓ in the 2-modular diagram by splitting the 2’s along the
boundary of the triangle into two 1’s:

2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2
2 2 2 2 2 1
2 2 2 2 1
2 2 2
2 →

2 2 2 2 2 11 2 2 2
2 2 2 2 11 2 2
2 2 2 11 2 1
2 2 11 2 1
2 11 2
11

And then separating the 1’s into distinct boxes, giving a triangle with odd rows:

2 2 2 2 2 1 1 2 2 2
2 2 2 2 1 1 2 2
2 2 2 1 1 2 1
2 2 1 1 2 1
2 1 1 2
1 1

(b) Now detach the remaining parts of each row, and slide the 1’s to the right, com-
bining with any previous 1’s from the 2-modular diagram (the triangle is removed



in the second part of the figure):

2 2 2 2 2 1
2 2 2 2 1
2 2 2 1
2 2 1
2 1
1

1 2 2 2
1 2 2

1 2 1
1 2 1

1 2
1 →

2 2 2 1
2 2 1
2 2
2 2
2 1
1

Explain why the gap-2 condition is now equivalent to the property that these
excess rows form a partition λ̃ with ℓ(λ̃) = ℓ that has arbitrary even parts and
distinct odd parts.

(c) Read the columns of λ̃ (i.e., take its conjugate λ̃′) to obtain a partition with
distinct odd parts, and all parts at most 2ℓ. For the running example the columns
are

2
2
2
2
2
1

2
2
2
2
1

2
1 1

so λ̃′ = 11 + 9 + 3 + 1. Conclude (5) by combining the ℓ-triangle and λ̃, and then
summing over ℓ.


