
A ONE-LINE HIGH SCHOOL ALGEBRA PROOF 
OF THE UNIMODALITY OF THE GAUSSIAN 

POLYNOMIALS [E ]  FOR k <  20* 

DORON ZEILBERGERt 

Abstract.  By "squeezing the combinatorics out" of Kathy O'Hara's magnificent combinatorial 

proof of the unimodality of the Gaussian polynomials , we give an extremely short and ele- [;I 
mentary proof of this unimodality for k < any fized integer, and a fairly short, semi-combinatorial 
proof for general k .  Combined with Macdonald's paper in this volume the present paper implies 
an entirely elementary algebraic proof of the unimodality of the Gaussian polynomials. 

1. Introduction and Preliminaries. Kathy O'Hara ([2],[3], see also [9]) 

has recently astounded the world of combinatorics by giving the long-sought-for 
combinatorial proof of the unimodality of the "Gaussian polynomials" 

Prior t o  O'Hara's proof there were only indirect proofs that made use of very 
advanced mathematics. The reader is referred t o  Proctor's elegant paper [8] for the 
history and significance of this result. A polynomial a. + . . -  + aNqN is unimodo.1 
if it is increasing up to a point and then it is decreasing, i.e. there exists an index i 
such that 0.0 I a1 _< . . . _< a; > . . . > aN. 

The first proof of the unimodality of the Gaussian polynomials was given by 
Sylvester[7], as a consequence of a deep theorem in the classical theory of invariants. 
Among the many other proofs we only mention White's[8] elegant Polya theoretic 
proof, Macdondd's[4] (1.8. ex 4) "functorial" proof and the linear algebra proofs of 
Proctor[5] and Stanley[G]. 

A careful scrutiny of O'Hara's proof enabled me to "algebrize" her combinatorial 
proof to  get extremely short, though unmotivated, high school algebra proofs of the 
unimodality of G(n, k) for k I A, where A is a fixed number that depends on the 
size of one's computer. In order to prove the general result I still need to use past 
of O'Hara's combinatorid argument. 

The darga of a polynomial p(q) = aiqi + ... + ajqj, with a; # 0 and a, # 0, is 
defined to be i + j, i.e. the sum of its lowest and highest powers. For example darga 

( q2  + 3q3) = 5 and darga (q2) = 4. A polynomial p(q) = agqg + . . . + a,-gqm-g is 
s;ymmetric if a; = a,-; for every i. 

We need to make three simple observations. 

Observation I .  The sum of two symmetric and unimodal polynomials of darga. 
in is also symmetric and unimodal of darga m. 0 
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Observation 2. The product of two symmetric and unimodal polynomials of 
dargas m and m' respectively is a symmetric and unimodal polynomial of darga 
nz + m'. 

Proof It is readily seen that a polynomial of darga m is symmetric and uni- 
inodal if and only if it can be expressed as a sum of "atomic" entities of the forin 
c(qr + qr+' + . . . + qm-'), for some positive constant c and some integer T 5 m/2. 
So it is enough to prove that the product of two such atoms of dargas m and m' is 
unirnodal. But this is clear because 

Observation 3. If p is symmetric and unimodal of darga m then qRp is syinmetric 
and unirnodal of darga m + 20. I] , 

In order to make part of this paper comprehensible to real high school students 
we will first spell out the proofs of the unimodality of G(n, k) for k 5 6. We 
will have one routinely verifiable line for each of k = 1, .  . . ,6. Later we will see 
that all these lines are just special cases of a single line, that is however long and 
complicated. This hairy line ((KOH) below) is an amazing q-binomial identity, that 
is a consequence of O'Hara's combinatorial proof. In order to prove this amazing 
identity for every k, we will have to make use of O'Hara's argument. However for 
k < any fized number, this q-identity is nothing but afinite algebraic identity, easily I 

verifiable by MAPLE, MACSYMA and their like. 

2. Proof  Of The Unimodality Of G(n,  k) For  k _< 6. In the following 
proofs of Propositions k, 2 5 k 5 6, one should prefix the following sentence: "By 
the inductive hypothesis, propositions i for i < k, and the three observations, the 
unimodality of G(n,  k) follows from the following routinely verifiable algebraic iden- 
tity (both sides are polynomials in qm with coefficients that are rational functions 
of q )." 

PROPOSITION 1 .  G(m, 1) is symmetric and unimodal of darga m. 

Proof. G(m, 1) = 1 + q + q2 + . . . + qm. 

PROPOSITION 2. G(m, 2) is symmetric and unimodal of darga 2m. 

Proof G(m, 2) = q2G(m - 2,2) + G(2m, 1). 

PROPOSITION 3. G(m, 3) is symmetric and unimodal of darga 3m. 

Proof. G(m, 3) = q6G(m - 4,3) + q2G(2m - 2,1)G(m - 2 , l )  + G(3m, 1). 

PROPOSITION 4. G(m, 4) is symmetric and unimodal of darga 4m. 

Proof 



PROPOSITION 5. G(m, 5) is symmetric and unimodal of darga 5m. 

Proof. 

PROPOSITION 6. G(m, 6) is symmetric and unimodal of darga 6m. 

Proof. 

3. A n  Amazing q-Binomial Identity T h a t  Implies T h e  Uniinodality 
Of G(n,  k) For Every n and k. 

G(n, k) = ( K O H )  

Note that the sum here is over all partitions of k : i I d i ) ,  where ab means L'a 
repeated b times". Thus, for a fixed k, the number of summands is p(k), the num- 
ber of partitions of k ,  which is asymptotically roughly (by the Hardy-Ramanujan 
formula [I]) ecA, for some constant c. Each summand is a product of at most 

terms. The special cases 2 _< k _< 6 were given above. For every specific I; 

this identity is a routinely verifiable identity, but of course since p(k) grows rapidly 
it soon becomes impractical. 

As I have already mentioned, I obtained (KOH) by "algebrizing" O'Hara's [3] 
main result, as simplified in [9]. However I was unable to completely algebrize 
her proof, so the proof of (KOH) will have to be combinatorial, using O'Hara's 
argument. I am offering twenty five dollars for an elementary, non-combinatorial, 
proof of (KOH), whose length is not to exceed 2 pages. [Note added in the revised 
version: Ian Macdonald has won this prize, see his paper [lo] in the present volume. 

The proof of (KOH) will be given in the next section, but before let us show why 
(ICOH) implies the unimodality of G(n, k). By the inductive hypothesis, G(a, b) is 
symmetric and unimodal of darga ab, for a < n or b < k. 



The only G ( a ,  b) on the right side of ( K O H )  for which b  = k  is the one come- 
sponding to dl = k ,  d; = 0  for 1  < i < k ,  and this term is q " ( " - ' ) ~ ( n  - 2(k  - I ) ,  k ) ,  
which by the natural inductive hypothesis and observations 2  and 3 is symmetric 
and unimodal of darga n k .  All the other terms have di < k  and so the G ( a ,  b)'s 
featuring there have b  < k .  Now it follows by the inductive hypothesis and observa- 
tions 2  and 3  that each term is symmetric and unimodal of a certain darga, and a 
straightforward calculation shows that the power of q  that appears is just the right 
one to make each term have darga n k .  The rest follows from Observation 1. 

4. Proof Of (KOH). Let 

U ( b , a ) : = { p =  ( p l , . . . , p , ) ; O < p l  < - . . < p a  < b ) .  

For every p  in U(b ,  a )  let 

weight ( p )  := qpl+".+pa 

.Ic 
and for any subset S of U(b ,  a )  ( including of course U(b ,  a )  itself) let 

weight ( S )  := x weight (p). 

P ~ S  

It is well known ( e.g. [I], 3.2) and easy to see that weight (U(b ,  a ) )  = G(b ,  a ) .  

In [9] were defined certain subsets U(b ,  a ;  m, d )  of U(b ,  a )  that depend on two 
extra parameters m and d. We also defined the subsets (b,  a ;  m )  to be the union 
of U(b ,  a ;  m', d ' )  over all m' < m and all d'. Let 

v(b ,  a ;  m )  := weight ( u ( b ,  a ;  m ) )  

Taking weight in the O'Hara Structure Theorem of 191, we get 

weight ( U ( b ,  a ;  m, d ) )  = q  2 b d - m d ( d t 1 ) ~  ( m a  $ 2 m  - 2b, d ) v (b  - m d ,  a  - 2d; m - I ) ,  

and summing over all conceivable d ,  we get 

~ ( b ,  a ;  m) -v (b ,  a ;  m - 1 )  = x q2bd-md(d+l )~ (  ma+2m-2b, d)v(b-md,  a-2d; m- l ) ,  
d>O 

From which easily follows 

(*) ~ ( b ,  a ;  m )  = x q 2 b d d - m d ( d + 1 ) ~ ( m a  + 2 m  - 2b, d ) v (b  - m d ,  a  - 2d; rn - 1). 
d>O 

(I<OH) is obtained by starting with G(b,  a )  = v(b,  a ;  b)  and iterating (*) b  times . 
The first iteration expresses v(b,  a ;  b) in terms of a single sum involving v ( - ,  -; b- 1 )  
a.nd G ( - ,  -), the second iteration would give a double sum that feature v ( - ,  -; b-2) 
and G ( - ,  -), . . . , until one gets a b-fold sum that only features products of G ( - ,  -), 
in which point we have arrived at ( K O H ) .  



I 

i 5.  REMARKS. Identity (I<OH) would never have been discovered without O'Hara's 

I combinatorial breakthrough. However, once discovered, it is conceivable that a 

I non-combinatorial high-school algebra proof exists. Ian Macdonald, in the paper 

1 that follows, gives such a proof. It was noted by Ron Evans and Dennis Stan- 
ton that the identity proved by Macdonald is in fact slightly different, although it 
too implies the unimodality of the Gaussian polynomials. In the original (I<OH) 
G(n, k) is taken to be zero whenever n is negative, whereas in Macdonald's version 

1 

I [lo], that Dennis Stanton named (MACKOH), G(n, k) is defined by its formula 
(1 - qn+') . . . (1 - qn+k)/( l  - q) . . . (1 - qk) , for every n. (KOH) and (MACKOH) 
coincide for n > k, since then all the G(-, -) appearing on the right side have 
non-negative n. It follows that (MACKOH) suffices to prove unimodality, since, by 
t,he symmetry of the Gaussian polynomials G(n, k), we already know, by induction, 
t,hat G(n, k) is unimodal for n < k (G(n, k) = G(k,n)), so we only have to use 
(IiOH) for n 2 k. 

(I<OH) implies (MACKOH), since the later is a polynomial identity in qn, and 
(KOH) testifies to its truth for an infinite number of cases. It is not known whether 
(MACKOH) can be used to prove (KOH). 

(KOH) turned out to have some other surprising consequences. In [ll] it is 
used to prove that the coefficients (1 - q)min([(k+1)/2]~[(n+1)~2])~(n, k) alternate in 
sign whenever at least one of n and k is even. This proved and extended Andrew 
Odlyzko's conjecture that the MacLaurin coefficients of the reciprocal of the q- 

analog of n! alternate in sign. 

While (MACKOH) suffices for the unimodality of G(n, k), it cannot be used for 
the above mentioned result of [ll]. We still need (KOH), and consequently the only 
proof known at present of this result uses combinatorics. 

David Bressoud 1121 [13] found an elegant half combinatorial and half algebraic 
proof of (KOH), and in the process found a far reaching generalization. 

Goodman and 07Hara discovered that the definition of 'spread' in [3] causes a 
minor glitch in the derivation of (KOH) given in section 4. In [14] they introduced a 
very minor modification in the definition of 'spread' that makes the glitch disappear. 

John Stembridge informed me that he now has a purely algebraic Hall-Littlewood 
function proof of (KOH) and of other identities of Bressoud-Andrews-Gordon style. 
Furthermore he can surgically remove the intimidating Hall-Littlewood functions 
a.nd what remain are high school algebra proofs. 

I REFERENCES 

[I] ANDREWS, GEORGE, "The Theory of Partitionsn, Addison-Wesley, Reading, Mass., 1976. 

[2] O'HARA, KATHLEEN M, Unimodality of Gaussian coefficients: a constructive proof, research 
announcement, preprint, University of Iowa. 

[3] O'HARA, KATHLEEN M, Unimodality of Gaussian coefficients: a constructive proof, J .  Comb. 
Theory (series A),  to appear. 

[4] MACDONALD, IAN G ,  "Symmetric Functions and Hall Polynomials", Clanderon Press, Ox- 
ford, 1979. 

[5] PROCTOR, ROBERT, Solution of two difficult combinat orial problems with linear algebra, 
Amer. Math. Monthly, 89, (1982), 721-734. 



STANLEY, RICHARD P, Quotients of Peck posets, Order 1, (1984), 29-34. 

SYLVESTER, JAMES J ,  Proof of the hitherto undemonstrated fundamental theorem of invari- 
ants, "Collected Math. Papers", vol. 3, Chelsea, New York, 1973, 117-126. 

WHITE, DENNIS, Monotonicity and unimodality of the pattern inventory, Advances in Math, 
38, (1980), 101-108. 

ZEILBERGER, DORON, Kathy 07Hara's constructive proof of the unimodality of the Gaussian 
polynomials, American Mathematical Monthly, to appear. 

MACDONALD, 1.G ., An elementary proof of a q-binomial identity, in Dennis Stanton (ed.), 
q-Series and Partitions, IMA Volumes in Mathematics and its Applications, Springer-Verlag, 
New York (1989). 

STANTON, DENNIS A N D  ZEILBERGER, DORON, The Odlyzko conjecture and O'Hara's uni- 
modality proof, Proc. AMS, (to appear). 

BRESSOUD, DAVID, Unimodality of Gaussian polynomials, preprint. 

, In the Land of OZ, in Dennis Stanton (ed.), q-Series and Partitions, IMA 
Volumes in Mathematics and its Applications, Springer-Verlag, New York (1989). 

F.M. GOODMAN A N D  K.M. O'HARA, On the Gaussian polynomials, in Dennis Stanton (ed.), 
q-Series and Partitions, IMA Volumes in Mathematics and its Applications, Springer-Verlag, 
New York (1989). 




