
MATH 7230 Homework 1 - Spring 2017
Due Thursday, Jan. 25 at 10:30

You are required to turn in at least one of the following problems, and must complete a
total of 20 by semester’s end. Group work is allowed, but your solutions must be written up
individually.

The notation “MV A.B.C” means Exercise C at the end of Section A.B in the textbook
(Montgomery-Vaughan).

In Problems 1 – 4 you will explore some lesser-known proofs of the infinitude of the
primes.

1. (a) Fill in the details of the following proof that there are infinitely many primes:

Pick an arbitrary 1 ̸= N ∈ N and set a(1) := N . Define

a(2) := N · (N + 1),

a(3) := N · (N + 1) ·
[
N · (N + 1) + 1

]
,

and so on, with a(m) := a(m− 1) · (a(m− 1) + 1). Prove that for all m, a(m) has
a prime factor pm that does not divide a(1), . . . , a(m− 1). Conclude that there is
an infinite list of distinct primes p1, p2, . . . .

(b) Generalize the above proof by letting f : N → N be any arithmetic function
such that n is always coprime to f(n), and constructing the iterative sequence
a(m) := a(m− 1) · f(a(m− 1)). For example, in part (a), f(n) = n+ 1.

2. The Fermat numbers are defined by Fn := 22
n
+ 1 for n ∈ N0.

(a) Prove that Fn = F0F1 · · ·Fn−1 + 2.

Hint: Try to factor Fn − 2.

(b) Conclude that all Fn are relatively prime, and therefore, there are infinitely many
primes!

3. In this problem you will modify Euclid’s proof to obtain special cases of Dirichlet’s
Theorem on primes in arithmetic progressions.

(a) First, prove that there are infinitely many primes of the form 4n + 3 as follows:
Given a list q1, q2, . . . , qk of primes of this form, let N := 4q1 · · · qk − 1. Prove that
N has a prime divisor q ≡ 3 (mod 4) that is not one of the qjs.

(b) Generalize your result from part (a) as much as possible.

Hint: If p is prime and m ∈ N, what are the possible residues p mod m?

4. All of the problems above use only basic properties of arithmetic. In this problem you
will also need some basic analysis (in the form of inequalities), while also assuming the
Fundamental Theorem of Arithmetic. Suppose that by way of contradiction there are
only finitely many primes p1, . . . , pr and choose a large integer N .



(a) Prove that each integer x can be factored uniquely as x = m2s, where s is square-
free: this means that there is no d > 1 such that d2 | s.

(b) Now consider all x ≤ N , and show that the factorization must satisfy m ≤
√
N .

(c) Finally, show that there at most 2r
√
N distinct factorizations. Complete the proof

by choosing N large enough to obtain a contradiction.

5. In this problem you will prove that e is irrational.

(a) As a warm-up, prove that 2 < e < 3 by comparing the Taylor expansion e − 2 =∑
n≥2

1

n!
to the geometric series

∑
n≥1

1

2n
.

(b) Suppose to the contrary that e = a
b ∈ Q. Find a contradiction by showing that

b!

(
e−

b∑
n=0

1

n!

)

is an integer between 0 and 1.

Remark: Actually, it is easier to consider e−1, which was suggested by Pennisi
(1953).

(Optional) To learn why e is transcendental, I recommend starting with Hurwitz’s proof,
which is Theorem 204 in Hardy and Wright. You can also find the argument
outlined online at: http://planetmath.org/eistranscendental.

An alternative proof follows directly from Euler’s continued fraction representation
e = [2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, . . . ], though this requires the theory of continued
fraction convergents and Bessel functions.

6. The Prime Number Theorem (PNT) states that as X → ∞,

π(X) := # {p ≤ X | p prime} ∼ X

log(X)
.

(a) Using your favorite computational software package (learn one if you don’t know
any!), calculate π(200), π(2000), and π(20000), and compare values.

(b) Suppose that the primes are listed in order, as p1 = 2, p2 = 3, p3 = 5, . . . . Prove
that PNT is equivalent to the following asymptotic formula for the k-th prime:

pk ∼ k log(k).

(c) What (if anything) can you now conclude about successive prime gaps, pk+1−pk?

In Problems 7 – 9 you will learn some basic facts about an extremely important function
in Number Theory.

7. The Riemann Zeta function is defined by

ζ(s) := 1 +
1

2s
+

1

3s
+

1

4s
+ · · · .

(a) Prove that ζ(s) converges absolutely if Re(s) > 1.



(b) Euler’s product expansion states that

ζ(s) =
∏

p prime

1

1− 1
ps
. (1)

Use the Fundamental Theorem of Arithmetic to prove this as a formal identity
(i.e., ignoring all questions of convergence, show that the individual terms of the
Dirichlet series are the same).

(c) In order to prove that infinite products converge (or diverge), it is often convenient
to compare to a sum. First, prove that 1−x ≤ e−x for all real x. Then prove that

1− x > e−x−x2

for 0 < x < 1
2 .

(d) Use parts (b) and (c) to prove that (1) also converges for Re(s) > 1. You need to

show that
∏(

1− 1
ps

)
is not zero.

8. (a) Prove that ζ(1) diverges to +∞. Try to provide multiple arguments: Series tests;
Integral Comparisons; etc.

(b) Recalling (1), give another proof that there are infinitely many primes.

9. It is an amazing fact that ζ(2) = π2

6 (this is known as “Basel’s problem”, and the first
proof is generally attributed to Euler. It is also a fact that π2 (and indeed, any rational
power of π) is irrational.

Use these facts to provide yet another (very short!) proof that there are infinitely many
primes.

Remark: We will revisit Euler’s original proof using infinite product expansions later in the

semester. The more standard “modern” proofs generally use Fourier series.


