
MATH 7230 Homework 3 - Spring 2017
Due Thursday, Feb. 8 at 10:30

You are required to turn in at least one of the following problems, and must complete a
total of 20 by semester’s end. Group work is allowed, but your solutions must be written up
individually.

The notation “MV A.B.C” means Exercise C at the end of Section A.B in the textbook
(Montgomery-Vaughan).

1. MV 1.1.3. This problem is an interesting example of using basic complex analysis to
prove a result about integer congruences!

2. MV 1.1.7. This problem illustrates an application where generating functions are used
to find a very simple answer to a seemingly complicated counting problem. Verify the
result for a few small cases, say p = 2, 3 and k = 1, 2: write out all the polynomials and
their factorizations.

3. In this problem you will prove the discrete version of Abel’s “partial summation”. Sup-
pose that f, g : N → C are two arithmetic functions, with corresponding accumulation
functions

F (n) :=
∑

1≤m≤n

f(m), G(n) :=
∑

1≤m≤n

g(m).

Prove that ∑
1≤n≤N

f(n)G(n) = F (N)G(N)−
∑

1≤n≤N

F (n− 1)g(n).

Remark: This is analogous to integration by parts using the finite difference operator ∆(h(n)) :=

h(n)− h(n− 1) instead of the derivative; then F (n) is the “anti-difference” of f(n).

4. One of the basic applications of partial summation is Abel’s Lemma for series: Suppose
that {an}n≥1 is a monotone (decreasing or increasing) sequence, and {bn} is a sequence
such that

∑
n≥1 bn converges. Then

∑
n≥1 anbn converges.

(a) One key step in the proof is to apply the finite-difference operator to the sequence
of an. Define a′n := an − an−1, so that (setting a0 := 0 for convenience)

an = a′n + a′n−1 + · · ·+ a′1.

Now apply the discrete partial summation from Problem 3.

(b) Complete the proof by bounding each term absolutely. You will need to use the
fact that all a′n are the same sign (why?).

5. In lecture we discussed Chebyshev’s “weighted” prime counting function, θ(X) :=∑
p≤X log(p), and used partial summation to prove an implication of the Prime Number

Theorem (PNT):

π(X) ∼ X

log(X)
=⇒ θ(X) ∼ X.



Prove the converse implication (which shows that Cheyshev’s condition is equivalent to
PNT).

Hint: Apply partial summation to π(X) =
∑
p≤X

1 =
∑
n≤X

1P(n) log(n) ·
1

log(n)
, where 1P is the

indicator function for the set of primes P.

In lecture we used Euler’s summation by parts in order to prove Stirling’s formula up to a
constant; in particular, we found that

n! ∼ c′
√
n
(n
e

)n
. (1)

In Problems 6–7 you will learn two different proofs that c′ =
√
2π.

6. Euler stated that following product expansion for the sine function:

sin(x) = x
∏
n≥1

(
1− x2

n2π2

)
.

Euler’s roughly used the Fundamental Theorem of Algebra (which is only true for
polynomials!) to argue that since sin(x) has a zero at nπ for any n ∈ Z, there must

be a linear factor (x − nπ) in the product. Furthermore, since limx→0
sin(x)

x = 1, the
product must be scaled by a constant such that sin(x) = x+ · · · . This argument is not
legal (why?), but Euler’s expansion is true, as was proven later by Weierstrass.

(a) Prove that if x is fixed, then for large N → ∞ the series may be truncated to
obtain an approximation; i.e. that

sin(x) ∼ x
N∏

n=1

(
1− x2

n2π2

)
.

(b) Now plug in x = π
2 to obtain Wallis’ formula (fill in the details of the calculation):

1 ∼ π(2n)!(2n+ 1)!

24n+1(n!)4
. (2)

(c) Finally, plug in (1) for each factorial and solve for c′.

7. In this problem you will prove Wallis’ formula (2) using a family of trigonometric
integrals. Let

In :=

∫ π
2

0
sinn(x)dx.

(a) Evaluate I0 and I1.

(b) Use integration by parts to prove that for n ≥ 2,

In =
n− 1

n
In−2.

Conclude that In ∼ In−2 as n → ∞.

(c) Prove that I2n+2 < I2n+1 < I2n. Conclude that I2n+1 ∼ I2n as n → ∞.

(d) Now write I2n+1 and I2n in terms of factorials to derive Wallis’ formula.


