
MATH 7230 Homework 6 - Spring 2017
Due Thursday, Mar. 8 at 10:30

You are required to turn in at least one of the following problems, and must complete a
total of 20 by semester’s end. Group work is allowed, but your solutions must be written up
individually.

The notation “MV A.B.C” means Exercise C at the end of Section A.B in the textbook
(Montgomery-Vaughan).

In the proof of Selberg’s upper-bound sieve (MV Theorem 3.2) the main term required min-
imizing a quadratic expression subject to a linear constraint. Problems 1–3 provide several
approaches to solving such optimization questions. In each of these problems the goal will
be to find the minimum value of

G(τ) :=

N∑
i=1

aiτ
2
i , ai ≥ 0 (1)

such that
N∑
i=1

biτi = 1, bi ∈ R. (2)

The solution is G(τ) ≥ C :=

(∑
i

b2i
ai

)−1

, which is achieved when τi =
bi
ai
C.

1. The first approach is the most direct, as it attempts to complete the square in (1) while
making use of (2).

(a) For a constant c (to be determined later), write

G(τ)− c =

N∑
i=1

(
aiτ

2
i − cbiτi

)
and complete the square in each summand.

(b) You should have found

G(τ) =

N∑
i=1

ai

(
τi −

cbi
2ai

)2

+ c− c2

4

N∑
i=1

b2i
ai
.

The minimum value of this expression occurs when all of the quadratic terms are
0, but this is only useful if it is possible to choose τi satisfying (2). Assuming that
τi =

cbi
2ai

, what can you conclude about c? In particular, how does c relate to C
above?

(c) Now simplify c− c2

4

N∑
i=1

b2i
ai

to find the minimum value of G.
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2. The second approach uses Lagrange Multipliers, which is a general technique for solving
constrained optimization problems.

(a) Define

L(τ, λ) := G(τ)− λ

(
N∑
i=1

biτi − 1

)
and calculate the partial derivatives

∂

∂τi
L(τ, λ) and

∂

∂λ
L(τ, λ).

(b) It is a fundamental fact in the theory of Lagrange Multipliers that the max-
ima/minima occur at the critical points of L(τ, λ) (to understand this, consider
the level curves G(τ) = A; any maxima or minima must occur at values of A such
that the level curve is tangent to the constraint equation (2)). Find the critical
point(s) by solving the system

∂

∂τi
L(τ, λ) = 0, 1 ≤ i ≤ N, and

∂

∂λ
L(τ, λ).

(c) Plug in to determine the value of G(τ) at any critical points (and compare to
Problem 1 if you did it). Why can you conclude that you have found the minimum
value of G(τ)?

3. The final approach is to use the Cauchy-Schwarz inequality, which states that for real
numbers {ai}, {bi},

N∑
i=1

aibi ≤

(
N∑
i=1

a2i

) 1
2
(

N∑
i=1

b2i

) 1
2

,

with equality if and only if the vector (a1, . . . , aN ) is a scalar multiple of (b1, . . . , bN ).

(a) Starting with the constraint (2), write

1 =
N∑
i=1

biτi =
N∑
i=1

bi√
ai

·
√
aiτi.

Now apply the Cauchy-Schwarz inequality.

(b) In order to achieve the lower bound, you will need to use the equality condition.
Show that this implies that there is some constant c′ such that c′ bi√

ai
=

√
aiτi for

all i.

(c) Find an expression for c′ in terms of the ai and bi, and compare to C.

In Problems 4–5 you will answer a more general version of MV 3.2.5, which is based on
Section 2 of Hensley’s 1978 paper “An Almost-Prime Sieve”. One of the main results that
you will prove uses the Basic Sieve Bound for Primes along with corollaries of Selberg’s Sieve
in order to give upper bounds for the number of integers that are the product of at most 2
primes.
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Recall the Basic Sieve Bound for Primes, which states that

π(X + Y )− π(X) ≤ ω(P ) + S(X,Y ;P )︸ ︷︷ ︸
:=#{X<n≤X+Y | (n,P )=1}

,

where typically P :=
∏
p≤z

p. The statistic Ω(n) is the total number of prime divisors of n

(with multiplicity), and ω(n) is the number of distinct prime divisors.

4. Let
Nk(X,Y ) := #

{
X < n ≤ X + Y | Ω(n) ≤ k

}
.

The overall goal is to estimate N2(X,Y ) by sieving with P (this is essentially MV
3.2.5(a)).

(a) Prove that

N2(X,Y ) = #
{
X < n ≤ X+Y : Ω(n) ≤ 2, (n, P ) = 1

}
+
∑
p|P

∑
X<n≤X+Y
p|n, Ω(n)≤2

1

ω((n, P ))
.

In particular, explain why the weights are necessary in the second sum to precisely
count those n with divisors from P .

(b) Conclude the upper bound

N2(X,Y ) ≤ S(X,Y ;P ) + ω(P ) +
∑
p|P

(
π

(
X + Y

p

)
− π

(
X

p

))
. (3)

Hint: If you make the change of variables n = pn′ in the second sum of part (a), then the

condition becomes Ω(n′) ≤ 1. Separate the case 0 and 1. . . .

5. This Problem is essentially MV 3.2.5(b), and is a continuation of Problem 4. Set

P :=
∏

p≤
√
Y

p.

(a) Show that the first two terms of (3) are bounded by

2Y

log Y
+O

(
Y

(log Y )2

)
.

(b) Show that the last term of (3) is bounded by

∑
p≤

√
Y

2Y
p

log
(
Y
p

) +O

 Y
p

log
(
Y
p

)2
 . (4)

Furthermore, write the first sum above as

2Y
∑

p≤
√
Y

1
p

log
(
Y
p

) =
2Y

log Y

∑
p≤

√
Y

1

p
+
∑

p≤
√
Y

1

p

(
1

log Y − log p
− 1

log Y

)
.
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Conclude that (4) is

2Y

log Y

∑
p≤

√
Y

1

p
+O

 Y

(log Y )2

∑
p≤

√
Y

log p

p

 .

Remark: If you instead uniformly bound the denominators in (4) by
(
log

√
Y
)−1

(since

p ≤
√
Y ), you obtain an overall constant of 2 instead of 4.

(c) Finally, conclude that

N2(X,Y ) ≤ 2Y log log Y

log Y
+O

(
Y

log Y

)
.

Remark: To get the constant of 2, you will need MV Theorem 2.7(b) and (d), which rely on

Chebyshev’s Theorem. Note that up until this point every bound was derived solely from Sieve

methods!
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