
MATH 7230 Homework 7 - Spring 2017
Due Thursday, Mar. 22 at 10:30

You are required to turn in at least one of the following problems, and must complete a
total of 20 by semester’s end. Group work is allowed, but your solutions must be written up
individually.

The notation “MV A.B.C” means Exercise C at the end of Section A.B in the textbook
(Montgomery-Vaughan).

Problems 1–4 fill in the details of the proof of the main term in MV Theorem 3.10, where
Selberg’s (upper-bound) sieve is used to bound the number of Twin Primes.

1. Recall the divisor function σ0(n) :=
∑
d|n

1. The main term of Selberg’s sieve for Twin

Primes requires the asymptotic formula

∑
n≤Z

σ0(n)

n
=

(logZ)2

2
+O (logZ) .

Prove this.

Hint:Theorem 2.3 showed that
∑
n≤Z

σ0(n) = Z logZ +O(Z). Now use partial summation. . . .

2. Selberg’s sieve (for arbitrary collections of restricted residue classes) requires minimizing
a quadratic expression subject to a linear constraint. This is typically simplified by
diagonalizing the quadratic form through a linear change of variables of the form

yf =
∑
f |d|P

Λdb(d)

d
.

It is important that this is an invertible linear map. In this problem you will verify
this by showing a (doubly) bounded Möbius inversion formula.

In particular, suppose that {an}, {bn} are sequences such that af =
∑
f |d|P

bd. Prove that

bd =
∑
d|f |P

af · µ
(
f

d

)
.

Hint: One approach is to directly plug in the formula for af and simplify, using properties of

the Möbius µ-function. Can you find a proof that uses Dirichlet series and/or convolution?

3. In lecture I skipped the derivation of the Twin Prime Constant in MV Theorem 3.10; the
next two problems fill in those missing details (see HW 2 #5 for a heuristic derivation,
and note that an earlier typo – a missing factor of 2 – has been corrected). The main
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term requires the asymptotic behavior of L =
∑

f |P, f≤z

µ(f)2g(f), where (for squarefree

f)

g(f) =
∏
p|f

b(p)

p− b(p)
, and b(p) =

{
1 if p = 2,

2 otherwise.

It is difficult to work with g directly, and one sees that it should be a relatively good
approximation to instead take

g(f) →
∏
p|f

b(p)

p
=

2ω(f)−δ

f
=

σ0(f)

2δf
,

where δ is the indicator function for 2 | f . More precisely, it is particularly convenient
to introduce a convolved function when approximating g. Define c(m) by the relation

µ(m)2g(m) =
(σ0
id

⋆ c
)
(m) =

∑
d|m

σ0(d)

d
c
(m
d

)
. (1)

(a) Using basic properties of Dirichlet series, explain why

αc(s) :=
∑
k≥1

c(k)

ks
=

∑
m≥1

µ(m)2g(m)

ms

∑
n≥1

σ0(n)

ns+1

−1

.

(b) Now use the multiplicative properties of the functions on the right to conclude
that

αc(s) =

(
1 +

1

2s

)∏
p>2

(
1 +

2

(p− 2)ps

)∏
p

(
1− 1

ps+1

)2

. (2)

Hint: For the second product, recall equation (1.5) in MV, which uses the fact that σ0 =

1 ⋆ 1 to express the Dirichlet series for σ0 in terms of ζ(s).

(c) Multiply and group terms to show that for p > 2 the expression in the product is
of the form

1 +O

(
1

ps+2

)
+O

(
1

p2s+2

)
+O

(
1

p3s+3

)
, (3)

where the constants all have a uniform bound.

Conclude that αc(s) converges absolutely for Re(s) > −1
2 . Which part of (3)

imposes this restriction? Also, be sure to show that the p = 2 terms in (2) also
converge in this half-plane.

4. This problem finishes the final bounds for the main term; if you did not complete
Problems 1–3, you may still use the results.

(a) Using (1), show that

L =
∑
k≤Z

c(k)
∑
n≤Z

k

σ0(n)

n
.
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(b) Using Problem 1, show that

L =
1

2
(logZ)2

∑
k≤Z

c(k)+O

logZ
∑
k≤Z

|c(k)| log k

+O

∑
k≤Z

|c(k)|(log k)2
 . (4)

(c) Using Problem 3 (c), show that for any δ > 0, the two big-O terms in (4) are
O(logZ) and O(1), respectively.

Hint: Recall that log k ≪ kε for any ε > 0, and compare the sums to αc(−ε).

(d) Finally, show that for any δ > 0,∑
k≤Z

c(k) = αc(0) +O

(
1

Z
1
2
−δ

)
,

and

αc(0) =

2
∏
p>2

(
1− 1

(p− 1)2

)−1

, (5)

where the product is the Twin Prime Constant.

Hint: For the first part, use Problem 3 (c). In particular, write the missing tail sum as

∑
k≥Z

c(k) =
∑
k≥Z

c(k)
k

1
2−δ

k
1
2−δ

≤ 1

Z
1
2−δ

∑
k≥Z

c(k)

Z−( 1
2−δ)

.

5. In this problem you will answer MV 3.4.2, which uses Selberg’s sieve to provide an
“upper bound to Goldbach’s Conjecture”. If you solved Problem 3, this should be fairly
straightforward. You may assume/use any bounds from the proof of MV Theorem 3.10.

For a (large) even integer 2n, we call (p1, p2) a Goldbach pair for 2n if pj is prime and
p1 + p2 = 2n.

(a) As usual, let P :=
∏
p≤Z

p. Explain why m ∈ [Z + 1, 2n−Z − 1] can not be part of

a Goldbach pair if (m,P ) > 1 or (2n−m,P ) > 1.

(b) Show that part (a) allows for use of Selberg’s upper-bound sieve with excluded
residue classes m ̸≡ 0, 2n (mod p). Conclude that the basic formulas of Selberg’s
sieve apply with

b(p) =

{
1 if p | 2n,
2 otherwise.

(c) Finally, prove that the number of Goldbach pairs for 2n is at most

8c′
2n

(log 2n)2

(
1 +O

(
log log n

log n

))
, (6)
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where

c′ :=
∏
p|2n

p− 1

p

∏
p-2n

p− 2

p

∏
p

(
1− 1

p

)−2

=
∏
p|2n

(
1 +

1

p− 1

) ∏
p-2n

(
1− 1

(p− 1)2

)
.

(d) There are two additional technical points: First, note that the sieve was defined

in terms of primes up to Z (which is chosen to be
√
2n√

log 2n
in the end), but the final

expression in part (c) only uses the prime factorization of 2n. Does this matter?
What happens if 2n has a prime factor larger than Z?

Hint: Show that such a prime is absorbed into the error term of (6).

Second, what about the excluded ranges in part (a), [1, Z] and [2n− Z, 2n]?
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