
MATH 7230 Homework 8 - Spring 2017
Due Thursday, Apr. 12 at 10:30

You are required to turn in at least one of the following problems, and must complete a
total of 20 by semester’s end. Group work is allowed, but your solutions must be written up
individually.

The notation “MV A.B.C” means Exercise C at the end of Section A.B in the textbook
(Montgomery-Vaughan).

Problems 1–3 address some properties of cyclotomic polynomials, which primarily arise in the
study of characters for the additive groups of integers modulo m (in contrast to Dirichlet
characters, which are for the multiplicative groups). In these problems you will prove much
of the content of MV 4.1.9 (although with somewhat shorter/simpler arguments than those
outlined in the textbook).

1. For a positive integer q, the cyclotomic polynomial is defined by

Φq(z) :=
∏

1≤n≤q
(n,q)=1

(
z − ζnq

)
, (1)

where ζn := e
2πi
n is the (canonical) primitive n-th root of unity.

(a) The Fundamental Theorem of Algebra implies that

zq − 1 =
∏

1≤n≤q

(
z − ζnq

)
.

Use this to prove that

zq − 1 =
∏
d|q

Φd(z). (2)

Remark: The cyclotomic polynomials are sometimes alternatively defined using (2), which
gives the recursive formula

Φq(z) :=
zq − 1∏

d|q, d<q

Φd(z)
.

The advantages of this definition are that it allows one to compute Φq(z) without using

any complex coefficients. In fact, this shows that Φq(z) is a series with integer coefficients;

however, it is not immediately clear that they are actually polynomials.

(b) Denote fm(z) := zm − 1. Prove that

Φq(z) =
∏
d|q

fd(z)
µ( q

d). (3)

Hint: The most compact proof follows from taking the logarithm of (2) and applying

Möbius inversion. Alternatively, one can carefully calculate the total exponent of each

factor (z − ζnq ) on the right side of (2), using (1).
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(c) Conclude that Φq(z) ∈ Z[z].

2. (a) Give a formula for Φq(z) if q = pk, where p is prime.

(b) Prove that

Φq(1) =

{
p if q = pk,

1 otherwise.

Hint: One approach is to use (3) to show that Φq(1) =
∏
d|q

dµ(
q
d ). Then take the logarithm

and use properties of the von Mangoldt function Λ(n).

3. In Homework 1 Problem 3 you used simple properties of subgroups in (Z/qZ)× to
prove that there are infinitely many primes p ̸≡ 1 (mod q). In this problem you will use
cyclotomic polynomials to prove the complementary fact (and special case of Dirichlet’s
theorem) that there are infinitely many primes p ≡ 1 (mod q).

(a) Prove that Φq(n) → ∞ as n → ∞.

Hint: It is sufficient to show that Φq(z) is a monic polynomial.

(b) Suppose that p is prime and p - q. Prove that if Φq(n) ≡ 0 (mod p), then ordp(n) =
q (i.e., nr ̸≡ 1 (mod p) for any proper divisor r | q, r ̸= q).

Hint: Suppose to the contrary that nr − 1 ≡ 0 (mod p) for some r | q with r < q. Use (2)

to conclude that n is a double root of zq−1 mod p. But then d
dz (z

q−1) = qzq−1 evaluated

at z = n is a multiple of p – why is this a contradiction?

(c) Now you will prove that there are infinitely many primes p ≡ 1 (mod q). In
particular, suppose that p1, · · · , pN are primes congruent to 1 mod q, and use
part (a) to choose k such that M := Φq(kqp1 · · · pN ) > 1. Now consider a prime
divisor p | M , and show that p - qp1 · · · pN .

(d) Finally, use part (b) to conclude that q | (p− 1), so that p ≡ 1 (mod q). Use part
(c) to conclude that p ̸= pj for 1 ≤ j ≤ N .

4. Both of these problems from the textbook are quite short! For both parts, start by
expanding the sums using the fact that the complex modulus satisfies |z|2 = z · z, and
then use the orthogonality relations.

(a) MV 4.2.2.

(b) MV 4.2.3.

5. MV 4.2.4. For part (c), consider the sum

S(a, q) :=
∑

χ mod q

k−1∑
j=0

(
χ(a)

ζ

)j

,

and evaluate it in two different ways. First, use part (b) to simplify it as written,
and second, interchange the summations and use orthogonality. Comparing the two
resulting expressions gives the claim.

Remark: This problem immediately leads to an “algebraic” proof that

ζm(s) :=
∏

χ mod m

L(s, χ) =
∏
p-m

(
1− 1

pordm(p)s

)− φ(m)
ordm(p)

,
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where ordm(p) denotes the order of p in the multiplicative group modulo m.

Problems 6–7 address the functions used in Golomb’s “Lambda method”, which constructs
a generalization of the von Mangoldt function to detect integers with a bounded number of
distinct prime factors. Recall that von Mangoldt’s function satisfies Λ = µ ∗ log, so that

Λ(n) =
∑
d|n

µ(d) log
(n
d

)
=

{
log p if n = pa;

0 otherwise.
(4)

Thus Λ is a (weighted) indicator function for integers that have at most 1 prime factor.
The generalized function is defined by

Λk(n) :=
∑
d|n

µ(d)
(
log

(n
d

))k
.

6. (a) Prove (by direct computation) that Λ(n) = 0 if n has at least two distinct prime
divisors. In other words, suppose that n = pam where a > 0,m > 1 and p - m,
and plug in to the sum in (4).

(b) Prove (by direct computation) that

Λ2(n) =

{
2 log p log q if n = paqb, where p, q are distinct primes;

(2a− 1)(log p)2 if n = pa.

Remark: It is also true that Λ2(n) = 0 if n has at least three distinct prime divisors,

but this is already a very involved calculation. The next problem provides a much more

powerful way of understanding the Λk.

7. Recall the typical notation for Dirichlet series: for a sequence or function {f(n)}∞n=1,
the corresponding Dirichlet series is

αf (s) :=
∑
n≥1

f(n)

ns
.

(a) Recall that (or prove if you’ve never done so before)

d

ds
αf (s) = −αf ·log(s).

Note that this is the product of f and log, not the convolution. Now use this to
show that

αΛk
(s) = (−1)k

ζ(k)(s)

ζ(s)
. (5)

(b) Using part (a) (specifically, take the derivative of (5)), prove the inductive formula

αΛk+1
(s) = αΛk·log(s) + αΛk

(s)αΛ(s).

For example, this implies that Λ2 = Λ · log+Λ ∗ Λ, i.e.

Λ2(n) = Λ(n) logn+
∑
d|n

Λ(d)Λ
(n
d

)
.
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(c) Conclude inductively that Λk(n) = 0 if n has more than k distinct prime factors.

(d) Finally, prove that if n = pa11 · · · pakk , with pj distinct and aj ≥ 1, then

Λk(n) = k! log p1 · · · log pk.

In Problems 8– you will explore some properties of arithmetic density. If A ⊂ B ⊂ N, then
the arithmetic (or natural) density of A in B is

dB(A) := lim
X→∞

# {n ≤ X | n ∈ A}
# {n ≤ X | n ∈ B}

.

Similarly, assuming that B is substantial (so that
∑

n∈B
1
n = ∞), the logarithmic (Dirichlet)

density is

DB(A) := lim
s→1+

∑
n∈A

1

ns∑
n∈B

1

ns

.

8. (a) Let A be the set of positive integers whose first digit is 1. Prove that the arithmetic
density of A does not exist.

(b) Prove that the logarithmic density of A is log10 2
∼= 0.301.

(c) Now let A′ be the set of positive integers with no digits equal to 1. Prove that
d(A′) = 0. What is D(A′)?

9. In this problem you will prove some general properties of densities. If the type of density
is not specified, then the statement applies to both.

(a) Prove that if A is finite, then the density of A is zero (relative to any infinite set).

(b) Prove that if A1, A2 are disjoint and have densities δ1, δ2, respectively, then A1∪A2

has density δ1 + δ2.

(c) Use (a) and (b) to conclude that if δ1 + δ2 > 1, then A1 ∩A2 is infinite.

(d) Prove that if dB(A) = δ, then the logarithmic density is also DB(A) = δ.

Hint: Use partial summation.
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