Important upcoming dates:

- The Problem-Solving Seminar will **not** meet on Wednesday, Nov. 21 due to the Thanksgiving holiday. The last meeting of the semester will be Wednesday, Nov. 28.
- Putnam Mathematical Competition: Sat., Dec. 1. The Exam will take place in Lockett 232 from 8:30 A.M. 5:00 P.M.

LSU Problem Solving Seminar - Fall 2018 Nov. 14: Polynomials and Complex Numbers

Prof. Karl Mahlburg Website: www.math.lsu.edu/~mahlburg/teaching/Putnam.html

Let $f(x) = a_n x^n + a_{n-1} x^{n-1} \cdots + a_1 x + a_0$ be a polynomial with real coefficients. It is *monic* if the leading coefficient $a_n = 1$. The *degree* of a polynomial is the exponent of the leading term, in this case n. A root of f is a value r such that f(r) = 0.

- Rational Roots Test. If all of the a_i are integers and $r = \frac{p}{q}$ is a root, then p is a divisor of a_0 and q is a divisor of a_n .
- Descartes' Rule of Signs. If the non-zero coefficients of f(x) change sign s times, then f has at most s positive roots (with multiplicity). The actual number of positive roots is less than s by some multiple of 2. Replacing x by -x gives a similar test for negative roots.
- Polynomial Division Algorithm. A polynomial f(x) is a multiple of g(x) if $f(x) = h(x) \cdot g(x)$ for some polynomial h(x). If f(x) is not a multiple of g(x), then there are polynomials q(x) ("quotient") and r(x) ("remainder") such that $f(x) = q(x) \cdot g(x) + r(x)$, where r(x) has lower degree than g(x).
- Repeated Roots. A polynomial f(x) is divisible by $(x r)^k$ (i.e. the root r has multiplicity at least k) if and only if $f(r) = 0, f'(r) = 0, \dots, f^{(k-1)}(r) = 0$.
- Fundamental Theorem of Algebra. A polynomial of degree n has exactly n complex roots, counted with multiplicity. In particular, it has at most n real roots. Furthermore, if the roots are r_1, \ldots, r_n , then $f(x) = c(x r_1) \cdots (x r_n)$ for some constant c.
- Sum and Product of Roots. If a monic polynomial $f(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0$ has roots (with repetition) r_1, \ldots, r_n , then

$$a_{n-1} = -(r_1 + \dots + r_n);$$
 $a_0 = (-1)^n r_1 \cdots r_n.$

• Roots of Unity. The roots of $x^n - 1$ are $1, e^{\frac{2\pi i}{n}}, e^{\frac{2\cdot 2\pi i}{n}}, \ldots, e^{\frac{(n-1)\cdot 2\pi i}{n}}$. These can also be written as $1, \zeta_n, \zeta_n^2, \ldots, \zeta_n^{n-1}$, where $\zeta_n := e^{\frac{2\pi i}{n}}$. The previous property implies that

$$1 + \zeta_n + \zeta_n^2 + \dots + \zeta_n^{n-1} = 0.$$

• Euler's Formula. For real x, $e^{ix} = \cos(x) + i\sin(x)$.

- 1. Find all real roots (with multiplicity) of the following polynomials:
 - (a) $x^3 3x + 2$, (b) $2x^4 + x^3 = 7$
 - (b) $2x^4 + x^3 7x^2 3x + 3$,
 - (c) $5x^6 + 13x^4 + 8x^2 + 29$.
- 2. Two of the roots of the polynomial $p(x) = x^4 9x^2 + 4x + 12$ are x = 2 and x = -3. Without performing any polynomial division, determine the other roots and complete factorization of p(x).
- 3. (a) Determine the number of real roots of the cubic polynomial $2x^3 + x 1$.
 - (b) Are there any real values of a such that $ax^3 + x 1$ has three real roots?

Main Problems

4. (a) One of the following polynomials is a multiple of $x^3 - x$, and the other is a multiple of $x^3 - 1$; determine which is which:

$$x^{2018} - x^{218} + x^{28} - x^2$$
, $x^{2018} - x^{208} + x^{21} - x^8 + x - 1$.

(b) Determine the remainders when the opposite polynomial divisions are performed. For example, if f(x) is not a multiple of $x^3 - x$, then

$$f(x) = (x^3 - x) q(x) + r(x),$$

where q(x) is a polynomial, and r(x) is a non-zero polynomial of degree at most 2. (If r(x) = 0, this simply means that f was a multiple of $x^3 - x$).

- 5. There are many settings in mathematics where one begins with a polynomial f(x) and attempts to determine its roots. However, in this problem, you will consider this question in reverse: given a real number α , is there a (simple) polynomial such that $f(\alpha) = 0$?
 - (a) Consider the two real numbers

$$\alpha := \frac{1+\sqrt{3}}{2}, \qquad \beta := \frac{1+\sqrt{5}}{2}$$

Find polynomials f(x) and g(x) with integer coefficients such that $f(\alpha) = g(\beta) = 0$. For one of α, β there is a monic polynomial with integer coefficients – determine which one.

- (b) If $\alpha = \sqrt{2} + \sqrt{5}$, find a polynomial f(x) with integer coefficients such that $f(\alpha) = 0$. Remark: If α is a root of a monic polynomial with integer coefficients, it is known as an algebraic integer.
- 6. [VTRMC 2013 # 5] Let $f(x) = x^5 5x^3 + 4x$. In each part (i)–(iv), prove or disprove that there exists a real number c for which f(x) c = 0 has a root of multiplicity

(i) one, (ii) two, (iii) three, (iv) four.

7. Suppose that f(x) is a polynomial of degree n. It is a general principle that if f is uniquely determined if its value is known at n+1 points, say $f(a_j) = b_j$ for $0 \le j \le n$. The Lagrangian Interpolation formula then states that

$$f(x) = \frac{(x-a_1)(x-a_2)\cdots(x-a_n)}{(a_0-a_1)(a_0-a_2)\cdots(a_0-a_n)}b_0 + \frac{(x-a_0)(x-a_2)\cdots(x-a_n)}{(a_1-a_0)(a_1-a_2)\cdots(a_1-a_n)}b_1 + \frac{(x-a_0)(x-a_1)\cdots(x-a_{n-1})}{(a_n-a_0)(a_n-a_1)\cdots(a_n-a_{n-1})}b_n.$$

- (a) Determine the quadratic polynomial with values f(0) = 1, f(1) = 4, f(2) = 9.
- (b) Show that the Lagrangian Interpolation formula works as claimed; i.e., that $f(a_j) = b_j$ for all $0 \le j \le n$.
- (c) Suppose that f(x) satisfies f(0) = f(1) = f(2) = 1. The Lagrangian interpolation formula says that there is a unique quadratic polynomial $f(x) = ax^2 + bx + c$ with these values. But then g(x) = f(x) - 1 has **three** roots, at x = 0, 1, and 2 – and it is clear geometrically that a parabola can have at most two roots! Determine the coefficients of f(x) and explain the apparent paradox.
- 8. (a) Suppose that P(x) is a polynomial of degree n such that $P(1) = P(2) = \cdots = P(n) = 1$. Evaluate P(n+1).
 - (b) [Gelca-Andreescu 151] Let P(x) be a polynomial of degree n. Knowing that

$$P(k) = \frac{k}{k+1}, \quad k = 0, 1, \dots, n,$$

find P(m) for m > n.

9. [Putnam 2003 B1] Do there exist polynomials a(x), b(x), c(y), d(y) such that

$$1 + xy + x^2y^2 = a(x)c(y) + b(x)d(y)$$

holds identically?

10. (a) Neither of the following quartic polynomials have any rational roots. However, one of them factors into lower-degree polynomials with **integer** coefficients – determine which one:

$$x^4 + 1$$
 or $x^4 + x^2 + 1$

(b) Factor each of the following quartic polynomials into lower-degree polynomials with **real** coefficients:

$$x^4 - 2;$$
 $x^4 - x^2 + 1.$

11. [Putnam **2003 B4**] Let $f(z) = az^4 + bz^3 + cz^2 + dz + e = a(z-r_1)(z-r_2)(z-r_3)(z-r_4)$, where a, b, c, d, e are integers, $a \neq 0$. Show that if $r_1 + r_2$ is a rational number and $r_1 + r_2 \neq r_3 + r_4$, then r_1r_2 is a rational number.