LSU Problem Solving Seminar - Fall 2018 Oct. 3: Sequences and Series

Prof. Karl Mahlburg

 $\underline{Website}$: www.math.lsu.edu/ \sim mahlburg/teaching/Putnam.html

Useful facts:

- Limit of a Sequence. A sequence $\{a_n\}_{n=1}^{\infty}$ converges to a limit ℓ if for any $\varepsilon > 0$ there is an N such that $|a_n \ell| < \varepsilon$ for all n > N.
- Geometric Series. If |x| < 1, then $1 + x + x^2 + x^3 + \dots = \frac{1}{1 x}$.
- Ratio Test. Let $L := \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$. If L < 1, then $\sum_{n \ge 1} a_n$ converges, and if L > 1, then the sum diverges. If L = 1, the test is inconclusive.
- Monotone Convergence. If $a_1 \leq a_2 \leq \ldots$ and all $a_n \leq B$ for some constant B, then $\lim_{n \to \infty} a_n$ exists (though it may be less than B).
- Alternating Series. If $a_1 \ge a_2 \ge \ldots$ and $\lim_{n \to \infty} a_n = 0$, then the alternating series $a_1 a_2 + a_3 a_4 + \ldots$ converges.
- Integral Comparison. If f(x) is a decreasing function for $x \ge 0$, then $\sum_{n\ge 1} f(n) \le \int_0^\infty f(x) dx$.
- Linear Recurrences. The characteristic polynomial associated to a (homogeneous) recurrence $a_{n+k} = c_{k-1}a_{n+k-1} + \cdots + c_1a_{n+1} + c_0a_n$ is $p(x) := x^k c_{k-1}x^{k-1} \cdots c_1x c_0$. If p(x) has distinct roots $\lambda_1, \ldots, \lambda_k$, then the general solution to the recurrence is

$$a_n = b_1 \lambda_1^n + \dots + b_k \lambda_k^n$$

where the constants are determined by k initial values. If there is a **repeated** root λ of order m, then the general solution has the term $(d_{k-1}n^{k-1} + \cdots + d_1n + d_0)\lambda^n$.

		Warm Up
]	. (a)	Evaluate $S_1 = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \cdots$.
	(b)	Evaluate $S_2 = \frac{1}{2} - \frac{1}{4} + \frac{1}{8} - \frac{1}{16} + \cdots$.

Hint: How does $2 \cdot S_2$ compare to S_2 ?

2. Simplify the following expressions to rational fractions of the form $\frac{a}{b}$:

$$\frac{2}{1+\frac{2}{1+\frac{2}{1}}}, \qquad \frac{2}{1+\frac{2}{1+\frac{2}{1+\frac{2}{1}}}}, \qquad \frac{2}{1+\frac{2}{1+\frac{2}{1+\frac{2}{1}}}}, \qquad \frac{2}{1+\frac$$

3. (a) Evaluate 1 - ¹/₂ + ¹/₃ - ¹/₄ + ¹/₅ - *Hint: What is the Taylor series for the function* ln(1 + x) *around* x = 0?
(b) Evaluate ¹/_{1 ⋅ 2 ⋅ 3} + ¹/_{3 ⋅ 4 ⋅ 5} + ¹/_{5 ⋅ 6 ⋅ 7} +

Main Problems

4. (a) Let $q_1 = 1, q_2 = 3$, and for $n \ge 3$,

$$q_n = q_{n-1} + 2q_{n-2}.$$

Find a general formula for q_n .

(b) Let $p_1 = 2, p_2 = 2$, and for $n \ge 3$,

$$p_n = p_{n-1} + 2p_{n-2}.$$

Find a general formula for p_n .

(c) How do these series relate to Problem 2? Can you conjecture and/or prove any interesting properties?

For example, what can you say about $p_n - q_n$? What is $\lim_{n \to \infty} \frac{p_n}{q_n}$?

5. For a real number a, define an *infinite continued fraction* by

$$x_a := \frac{a}{1 + \frac{a}{1 + \frac{a}{1 + \frac{a}{1 + \frac{a}{1 + \frac{\cdot}{\cdot \cdot \cdot}}}}}$$

- (a) Assuming that the limit exists, determine the value of x_a . Hint: Note that $x_a = \frac{a}{1+x_a}$.
- (b) Recall Problems 2 and 4. What is the value of x_2 ?
- (c) What is the value of

$$\frac{3}{4 + \frac{3}{1 + \frac{3}{4 + \frac{3}{1 + \frac{3}{4 + \frac$$

Hint: How does this relate to x_a ? Try $a = \frac{3}{4}$!

6. [Gelca-Andreescu 300] The sequence a_0, a_1, a_2, \ldots satisfies

$$a_{m+n} + a_{m-n} = \frac{1}{2} \left(a_{2m} + a_{2n} \right),$$

for all nonnegative integers m and n with $m \ge n$. If $a_1 = 1$, determine a_n .

- 7. (a) Evaluate $\lim_{n \to \infty} \frac{1+2+\dots+n}{n^2}$.
 - (b) Prove the integral comparison

$$\int_0^n \sqrt{x} \, dx \le \left(\sqrt{1} + \sqrt{2} + \dots + \sqrt{n}\right) \le \int_1^{n+1} \sqrt{x} \, dx$$

- (c) Find the value of c such that $\lim_{n\to\infty} \frac{\sqrt{1} + \sqrt{2} + \dots + \sqrt{n}}{n^c}$ exists, and then evaluate the limit.
- 8. (a) Use Integration by parts to find an antiderivative of f(x) = x log x, i.e., evaluate ∫ x log x dx.
 Remark: In higher mathematics, log x typically means the natural logarithm ln x. This is because the logarithm base b only differs from ln x by a constant (as log_b x = 1/ln b ln x), and ln has the "nicest" analytic properties.
 - (b) [VTRMC **1992** # 7] Find $\lim_{n \to \infty} \frac{2 \log 2 + 3 \log 3 + \dots + n \log n}{n^2 \log n}$.
- 9. [Putnam 1999 A3] Consider the power series expansion

$$\frac{1}{1 - 2x - x^2} = \sum_{n=0}^{\infty} a_n x^n.$$

Prove that, for each integer $n \ge 0$, there is an integer m such that $a_n^2 + a_{n+1}^2 = a_m$.