LSU Problem Solving Seminar - Fall 2018 Oct. 17: Number Theory

Prof. Karl Mahlburg

Website: www.math.lsu.edu/~mahlburg/teaching/Putnam.html

Useful facts:

- Divisibility Tests. A positive integer *n* is divisible by:
 - -2 if its last digit is a multiple of 2;
 - -3 if the sum of its digits is a multiple of 3;
 - 4 if its last two digits are a multiple of 4;
 - 5 if its last digit is 0 or 5;
 - 7 if ____
 - -9 if the sum of its digits is a multiple of 9;
 - -11 if the alternating (with plus and minus signs) sum of its digits is a multiple of 11.
- The current year has the prime factorization $2018 = 2 \cdot 1009$, and the previous year, 2017, is prime.
- Fermat's Little Theorem. If p is prime and a is any integer, then $a^p a$ is a multiple of p.
- Remainders of Squares. For any integer n, n^2 can only have the following remainders:

0 or 1 when divided by 3; 0 or 1 when divided by 4; 0, 1, 4, 5, 6, or 9 when divided by 10.

• Greatest Common Divisors / Least Common Multiples. If a and b are integers with prime factorizations $a = p_1^{\alpha_1} \cdots p_r^{\alpha_r}, b = p_1^{\beta_1} \cdots p_r^{\beta_r}$, their greatest common divisor is

$$gcd(a,b) = p_1^{\min\{\alpha_1,\beta_1\}} \cdots p_r^{\min\{\alpha_r,\beta_r\}}.$$

The least common multiple is found by replacing min by max. The equation ax + by = N has integer solutions if and only if gcd(a, b) divides N.

• Euler's Totient Function. If $n = p_1^{\alpha_1} \cdots p_r^{\alpha_r}$, then define

$$\phi(n) := n \cdot \left(1 - \frac{1}{p_1}\right) \cdots \left(1 - \frac{1}{p_r}\right).$$

Among the integers 1, 2, ..., n, exactly $\phi(n)$ of them satisfy gcd(a, n) = 1. Furthermore, if gcd(a, n) = 1, then $a^{\phi(n)}$ has remainder 1 when divided by n.

• Casting Out Nines. If n is an integer and s is the sum of its decimal digits, then n - s is a multiple of 9.

Warm Up

1. Find the unique decimal solution to

$$BA \times CA = DDD.$$

In other words, find two 2-digit numbers that have the same ones digit such that their product is a three-digit number with a single digit repeated three times.

Hint: The desired product is $D \cdot 111 - can$ you factorize this further?

2. (a) Consider the integer

1234_{6} .

Fill in the missing digit so that the integer is a multiple of 9. Then fill it in so that the integer is a multiple of 11.

(b) One of the following expressions is a multiple of 11 – determine which one:

$$7^7 + 9^9$$
 or $7^9 + 9^7$?

- 3. (a) Find positive integers a and b such that $a^2 b^2 = 20$.
 - (b) Find positive integers a and b such that a² b² = 45.
 Remark: Both (a) and (b) have multiple solutions try to find them all!
 - (c) Are there positive integers a and b such that $a^2 b^2 = 2018$?

Main Problems

- 4. Give a precise (and simple!) characterization of the integers n that can be expressed as the difference of two squares, i.e., $a^2 b^2 = n$.
- 5. (a) Find the prime factorization of 77, 777, and 7777.
 - (b) Prove that every prime $p \neq 2, 5$ occurs in the prime factorization of some integer of the form $77 \cdots 7$.
- 6. Only one of the following equations has an integer solution determine which one.

$$x^{2} + 5y^{4} = 2018;$$

$$x^{2} + 2018y^{3} = -15.$$

Hint: Consider the remainders when dividing by 5....

7. (a) Suppose that n is an integer. Is it possible that

$$(n+1)^2 = n^2 + (n-1)^2?$$

If so, find **all** solutions.

- (b) [VTRMC **1984** # **2**] Consider any three consecutive integers. Prove that the cube of the largest cannot be the sum of the other two.
- 8. (a) [VTRMC **1984** # **1**] Find the units digit in the sum $\sum_{k=1}^{99} k!$.
 - (b) Find the first two exponents n such that 29^n ends with the digits 61.
- 9. (a) Suppose that a and b are both powers of 2. Show that at least one of a^2 or b^2 divides ab.

- (b) Now suppose that a and b may (individually) be a power of 2 or 3. Find an example where neither a^2 nor b^2 divides ab. However, show that if a, b, and c are powers of 2 or 3, then at least one of a^2, b^2 or c^2 divides abc.
- (c) [Adapted from **Gelca-Andreescu 10**] Let $P = \{p_1, p_2, \dots, p_k\}$ be a set of distinct prime numbers. Suppose that a_1, a_2, \dots, a_{k+1} are positive integers whose factorization only includes primes in P. Let $A := a_1 \cdot a_2 \cdots a_{k+1}$. Must it be true that a_j^2 divides A for some j? Prove your answer.
- 10. [Putnam 2017 B2] Suppose that a positive integer N can be expressed as the sum of k consecutive positive integers

$$N = a + (a + 1) + (a + 2) + \dots + (a + k - 1)$$

for k = 2017 but for no other values of k > 1. Considering all positive integers N with this property, what is the smallest positive integer a that occurs in any of these expressions?

11. [Putnam **2008 A3**] Start with a finite sequence a_1, a_2, \dots, a_n of positive integers. If possible, choose two indices j < k such that a_j does not divide a_k , and replace a_j and a_k by $gcd(a_j, a_k)$ and $lcm[a_j, a_k]$, respectively. Prove that if this process is repeated, it must eventually stop and the final sequence does not depend on the choices made. (Note: gcd means greatest common divisor and lcm means least common multiple.)