
MATH 7230 Homework 3 - Fall 2018
Due Wednesday, Sep. 19 at 1:30

https://www.math.lsu.edu/%7Emahlburg/teaching/2018F-MATH7230.html

You are required to turn in at least one of the following problems, and must complete a
total of 20 by semester’s end. Group work is allowed, but your solutions must be written up
individually.

The notation “Ash A.B.C” means Problem C from Section A.B in the textbook.

In Problems 1 – 2 you will give an alternative proof that if A is a subring of E, then the
algebraic integers with respect to A form a subring of E. If you need a reference, this
argument is found in Milne Chapter 2.

1. A polynomial f(x1, . . . , xn) ∈ A[x1, . . . , xn] is symmetric if f(xπ(1), . . . , xπ(n)) = f(x1, . . . , xn)
for any permutation π. The elementary symmetric polynomials are defined by

Sk(x1, . . . , xn) :=
∑

1≤i1<i2<···<ik≤n
xi1 · · ·xik (0 ≤ k ≤ n).

(a) For example, f(x1, x2, x3) = x31 + x32 + x33 is a symmetric polynomial. Write f as
a polynomial in S1, S2 and S3.

(b) Now prove that any symmetric function can be written as a polynomial in the Sk.

Hint: Your calculations from part (a) should suggest a natural way to order monomials

for an inductive argument. . . .

2. Now suppose that x ∈ E is integral over A, with minimal polynomial minx,A(X) =
f(X) ∈ A[X].

(a) If the minimal polynomial factors (possibly in some extension of E) as f(X) =
(X − x1) · · · (X − xn), with x1 = x, show that Sk(x1, . . . , xn) ∈ R for all k.

(b) Let x and y be integral elements in E (with respect to A), with minimal polyno-
mials f(X) = (X−x1) · · · (X−xn) and g(Y ) = (Y −y1) · · · (Y −ym), respectively.
Define

F (X) :=
m∏
j=1

f(X − yj),

which has as roots all sums xi + yj , including x+ y. Using Problem 1, show that
F (X) ∈ A[X]. This implies that x+ y is integral.

Similarly, define a monic polynomial G(X) that has xy as a root, and show that
G(X) ∈ A[X], so that xy is also integral.

In Problems 3–4 you will give two proofs of the Van der Monde determinant formula, which
states that

V (x1, · · · , xn) := det
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3. Give a proof by induction. You should start by using the row operations Rj 7→
Rj − xj−1

1 R1 for 2 ≤ j ≤ n, which give

V (x1, · · · , xn) = det
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Now apply the additional row operations (in order):

Rn 7→ Rn − x1Rn−1, Rn−1 7→ Rn−1 − x1Rn−2, · · · , R3 7→ R3 − x1R2.

If you’ve done this correctly, the induction step should now be clear.

4. Now prove the formula using polynomials, as if you view the matrix entries as vari-
ables, then you can use unique factorization in R[X1, · · · , Xn] (where R is any UFD).
In particular, show that both sides of (1) have the same roots, degree, and leading
coefficient.

In Problems 5–6 you will prove Ash Theorem 2.2.9, which states that if (x, y) : V → F
is a nondegenerate, symmetric, bilinear ((ax + bw, y) = a(x, y) + b(w, y)) form on V (an
n-dimensional F -vector space), then any basis V = 〈x1, · · · , xn〉F has a dual basis (referred
to V ) V = 〈y1, · · · , yn〉F such that (xi, yj) = δij . If you are unfamiliar with the terms,
nondegenerate means that for each x 6= 0, there is some y such that (x, y) 6= 0; symmetric
means that (x, y) = (x, y) for all x, y; and bilinear means that for x, v, w, y ∈ V and a, b ∈ F ,
(ax+ bv, y) = a(x, y) + b(v, y) and (x, ay + bw) = a(x, y) + b(x,w).

Note that the canonical orthogonal basis 〈e1, · · · , en〉F , with ej := (0, · · · , 0, 1, 0, · · · 0), is
its own dual.

5. (a) Ash 2.2.6. A linear form on V is a map f : V → F such that f(ax + bv) =
af(x) + bf(v). The dual space of V is

V ∗ := {f | f is a linear form on V } .

Note that V ∗ is also an F -vector space, and these problems essentially show that
when V = Fn is finite-dimensional, then V ∗ ∼= Fn as well.

Remark: In general, when V is infinite-dimensional V ∗ can have larger dimension!

(b) Ash 2.2.7. The “high-level” proof is to appeal to kernels/null spaces/dimension-
counting for finite-dimensional vector spaces. However, given a linear form f :
V → F , it is also possible to construct y such that f = `(y) using the canonical
basis.

6. (a) Ash 2.2.8. If 〈x1, · · · , xn〉F is a basis for V , then the corresponding dual basis is

〈f1, · · · , fn ∈ V ∗ | fj(xi) = δij〉F .

(b) Ash 2.2.9.


