
MATH 7230 Homework 5 - Fall 2018
Due Wednesday, Oct. 17 at 1:30

https://www.math.lsu.edu/%7Emahlburg/teaching/2018F-MATH7230.html

You are required to turn in at least one of the following problems, and must complete a
total of 20 by semester’s end. Group work is allowed, but your solutions must be written up
individually.

The notation “Ash A.B.C” means Problem C from Section A.B in the textbook.

Problems 1 – 2 are Ash’s proof that p ramifies in L if and only if p | DiscL/Q; we also filled
in most of the details in lecture.

1. (a) Ash 4.2.1.

(b) Ash 4.2.2.

(c) Ash 4.2.3.

2. (a) Ash 4.2.4.

(b) Ash 4.2.5.

(c) Ash 4.2.6.

3. In this problem you will verify the prime ideal factorizations discussed in lecture for
the ring B = Z[ζ5] (which are the algebraic integers in L = Q(ζ5); it turns out that the
class number is hL = 1, so all ideals are principal).

(a) First, show that (5)B = P 4, where P = (1− ζ5)B. In particular, calculate directly
that

(1− ζ5)4
(
−1− ζ5 + ζ35

)
= 5.

Furthermore, show that 1 + ζ5 − ζ35 is a unit by multiplying by (1 + ζ25 )2.

(b) Part (a) shows that (5)B ⊂ P 4. Why can you also conclude that P 4 ⊂ (5)B?

Hint: Use the efg-relation from Theorem 4.1.6.

(c) Show that (2)B = P ; i.e., that 2 is inert in B. Using Theorem 4.3.1, this requires
showing that minζ5,Q(X) is irreducible modulo 2.

4. In this problem you will consider ideal factorization in B = Z[ 3
√

2], which is the ring of
algebraic integers in L = Q( 3

√
2).

(a) Calculate the field discriminant of L.

(b) Find the prime factorizations of (2)B and (3)B.

(c) Ash 4.3.3. It is also a fact that the class number of this ring is one, so all ideals
are principal. You must write the prime ideals in your factorization as principal
ideals.

Furthermore, this is an example of a non-Galois field extension. Show that (5) =
P1P2 with relative degrees f1 = 1 and f2 = 2 (showing that Corollary 8.1.3 does
not hold).
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In Problems 5 – 7 you will explore rings of algebraic integers that are somewhat more more
complicated than seen in the small, typical examples of quadratic or cyclotomic extensions.
In particular, you will consider examples of biquadratic fields L = Q(

√
m,
√
`) (with m, `

squarefree) and see that the rings of integers B can have “unexpected” denominators, and
also, do not necessarily have power bases.

5. (a) First, consider L = Q(
√

2, i). Recall that the rings of integers in the subextensions
Q(
√

2) and Q(i) are Z[
√

2] and Z[i], respectively. Show that B ) Z[1,
√

2, i, i
√

2].

Hint: There are complex roots of unity other than {±1,±i} in L.

(b) Now let L = Q(
√

2,
√

6). It is easy to see that
√

12 should not be part of the
integral basis, as instead in Q(

√
12) one immediately has

√
3. But even this is not

enough, as B ) Z[1,
√

2,
√

6,
√

3].

Prove this by showing that α :=
√
2+

√
6

2 is an algebraic integer.

(c) Continuing from part (b), it turns out α generates a power basis, so B = Z[α] =〈
1, α, α2, α3

〉
Z. Prove that

√
2,
√

3,
√

6 ∈ Z[α].

6. [Adapted from Milne 2.2-6] In Problem 5, both examples have power bases, so B =
Z[α] for some α. However, this is not true of all number fields, as you will see in this
problem. Let L = Q(

√
7,
√

10), with ring of algebraic integers B = OL.

(a) Define a set of (conjugate) algebraic integers by

α1 := (1 +
√

7)(1 +
√

10), α2 := (1 +
√

7)(1−
√

10),

α3 := (1−
√

7)(1 +
√

10), α4 := (1−
√

7)(1−
√

10).

Denote the corresponding principal ideals by Pi := (αi).

Prove that for any 1 ≤ i < j ≤ 4, 3 | αiαj , so (3)B | PiPj .
(b) Calculate the trace TrL/Q(αi).

(c) Use part (a) to show that (α1 + α2 + α3 + α4)
k ≡ αk1 + αk2 + αk3 + αk4 (mod 3).

Conclude that TrL/Q(αki ) ≡ 1 (mod 3).

Conclude that
αk
i
3 is not an algebraic integer for any k; i.e., that (3)B - P ki .

7. This is a continuation of Problem 6. You will now show that B does not have a power
basis.

(a) Assume to the contrary that B = Z[θ], with f(X) := minθ,Q(X). Use the fact
that

Z[θ]/(3) ∼= Z[X]/(3, f(X)) ∼= (Z/3Z) [X]/(f(X))

to conclude that for g(X) ∈ Z[X], g(θ) ≡ 0 (mod 3) if and only if f(X) | g(X),
where f indicates the reduction modulo 3.

(b) Let gi(X) be defined such that gi(θ) = αi. Now use Problem 6 and part (a) to
show that f | gigj , but f - gik.
Thus the factorization of f(X) has at least 4 distinct factors, f(X) ≡ f1(X)f2(X)f3(X)f4(X)f5(X) · · ·
(mod 3). Use degree considerations to obtain a contradiction?



(c) Give an infinite family of biquadratic fields Q(
√
d1,
√
d2) such that B does not

have a power basis.

Remark: In fact, here an integral basis is

B =

〈
1,
√

7,
√

10,

√
10 +

√
70

2

〉
Z

.


